Overexpression of the cyclin-dependent kinase inhibitor p27 and exposure to low temperature (30 degrees C) represent two strategies to establish controlled proliferation processes for production of therapeutic proteins using Chinese hamster ovary (CHO) cells. Here we analyze the effect of growth inhibition on the quality of the human model glycoprotein SEAP (secreted alkaline phosphatase) for both strategies in monoclonal CHO-derived cell lines. Separation of purified SEAP samples using two-dimensional gel electrophoresis showed that production by proliferation-controlled CHO cultures did not alter the overall integrity of the product. Further, oligosaccharide profiles were compared using HPEC-PAD analysis. No differences were detectable between SEAP profiles obtained from p27 growth-arrested and proliferating cultures. However, production at 30 degrees C led to a significant increase in the degree of sialylation, an effect that is generally considered beneficial for the in vivo efficacy of protein therapeutics. In the production context presented here, SEAP expression is controlled by the tetracycline- (tet) repressible gene regulation system. Here we show low temperature-induced upregulation of the tetracycline-dependent transactivator (tTA). This induction has been shown by Northern blot analysis to occur at the mRNA level and is independent of the promoters driving the transactivator. We also describe a novel bottleneck in productivity at low temperature found in p27 growth-arrested CHO cells cultivated at 30 degrees C.

Download full-text PDF

Source

Publication Analysis

Top Keywords

controlled proliferation
8
low temperature
8
cho cells
8
p27 growth-arrested
8
comparative analysis
4
analysis controlled
4
proliferation strategies
4
strategies product
4
product quality
4
quality influence
4

Similar Publications

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.

View Article and Find Full Text PDF

Graphene-Based Materials for Bone Regeneration in Dentistry: A Systematic Review of In Vitro Applications and Material Comparisons.

Nanomaterials (Basel)

January 2025

Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.

Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a prevalent joint disorder requiring innovative treatment approaches.

Aim: To evaluate the use of nanofat, a specialized form of adipose tissue-derived cells, in the treatment of OA, by examining its efficacy, safety profile, mechanisms of action, comparative effectiveness, and long-term outcomes.

Methods: A comprehensive review of preclinical studies, clinical trials, and investigations was conducted.

View Article and Find Full Text PDF

Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects.

View Article and Find Full Text PDF

Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment.

Nat Commun

January 2025

Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!