Extracellular nucleotides induce apoptosis and inhibit growth of colorectal cancer cells. To understand the underlying signaling pathways, we investigated the role of nucleotide-sensitive P2 receptors and focused on the receptor-mediated signaling of intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) in two colorectal carcinoma cell lines (HT29, Colo320 DM). Expression and functionality of P2 receptor subtypes evaluated by RT-PCR and [Ca2+]i imaging revealed that solely metabotropic P2 receptors of the subtype P2Y2 were expressed on a functional level in both cell lines. Short-term stimulation of P2Y2 receptors caused Ca2+ mobilization from intracellular stores and a subsequent transmembrane Ca2+ influx. The receptor-induced [Ca2+]i elevation was shown to increase basal-stimulated [cAMP]i moderately and to potentiate forskolin-stimulated [cAMP]i vigorously, since the effects were dose-dependently inhibited by preloading the cells with the [Ca2+]i chelator BAPTA. In contrast, activation of protein kinase C (PKC) did not contribute to a receptor-mediated rise in [cAMP]i, since the PKC inhibitor staurosporine completely failed to reduce P2Y2 receptor-induced increases in [cAMP]i. Prolonged application of P2Y2 receptor agonists induced a time-dependent increase in apoptosis (up to 50% above control values) in both cell lines and caused dose-dependent inhibition of cell proliferation of up to 85% (Colo320 DM) or 64% (HT29). Chelating [Ca2+]i with BAPTA almost completely abolished P2Y2 receptor-induced cell death. Rises in [cAMP]i elicited by either forskolin or cAMP derivatives inhibited growth in both cell lines, too. In line with the potentiating effect of P2Y2 receptors on forskolin-stimulated [cAMP]i increases, costimulation with forskolin and P2Y2 receptor agonists led to synergistic antiproliferative effects. Moreover, a synergistic growth inhibition was observed when coincubating the cells with the P2Y2 receptor agonist ATP and the cytostatic drug 5-fluorouracil, which forms the basis for most currently applied chemotherapeutic regimes in colorectal cancer treatment. Our results demonstrate the growth inhibitory potency of P2Y2 receptors in colorectal carcinoma cells. Receptor-induced [Ca2+]i signaling appears to play a major role in the observed antiproliferative and apoptosis-inducing effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s003840100302DOI Listing

Publication Analysis

Top Keywords

p2y2 receptors
16
cell lines
16
colorectal carcinoma
12
p2y2 receptor
12
p2y2
10
growth inhibition
8
carcinoma cells
8
cyclic adenosine
8
adenosine monophosphate
8
colorectal cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!