The contents of phytic acid were determined for protein-rich flours and protein concentrates prepared from nigerseed, sunflower seed, rapeseed and poppy seed. The values ranged from 6.89 to 8.80 mg phytate-P per g of fat free weight. This means that the phytate content of the analysed oilseed flours was at least about 4 times higher than the phytate content of common grain cereals. The precipitation of extracted phytic acid with trivalent Fe was an important step in the analytical procedure. The Fe:P mole ratios of the precipitates from the different oilseeds were lower than the corresponding ratios previously reported for cereal materials.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03009737509178981DOI Listing

Publication Analysis

Top Keywords

phytic acid
12
contents phytic
8
protein concentrates
8
concentrates prepared
8
prepared nigerseed
8
nigerseed sunflower
8
sunflower seed
8
seed rapeseed
8
rapeseed poppy
8
poppy seed
8

Similar Publications

The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.

View Article and Find Full Text PDF

This research aimed to produce a multifunctional bread by adding hydrothermally processed rice bran (RB), green tea extract (GTE), and rosemary extract (RE). In the first step, hydrothermal processing was used to reduce the amount of phytic acid in RB, which decreased by 55 %. Based on the acrylamide amount, texture profile analysis, and color parameters, 3 % RB was selected as the optimum concentration in the bread formulation.

View Article and Find Full Text PDF

Diabetic wounds present a considerable challenge in modern medicine due to their prolonged healing process, driven by sustained inflammation and impaired vascular regeneration. This study introduces a novel hydrogel network through osmosis, utilizing hyaluronic acid (HA) and phytic acid (PA) for their anti-inflammatory and antioxidant properties, respectively. By incorporating recombinant Human Amelogenin (rhAM), known for its angiogenic potential, we aimed to develop the HA-PA-rhAM hydrogel to enhance wound healing in diabetic rats.

View Article and Find Full Text PDF

Tough, highly conductive and frost-resistant chitosan based hydrogel for flexible sensor.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China. Electronic address:

Conductive hydrogels with exceptional mechanical properties have received extensive attention in flexible strain sensors. However, there is still a huge challenge in the preparation of hydrogels with high toughness, conductivity and frost resistance performance. In this study, the prepared PA-PAAM-CS (PPAC) composite hydrogels were obtained by incorporating phytic acid (PA) and chitosan (CS) into poly(acrylamide-co-stearyl methacrylate) (PAAM) polymer network.

View Article and Find Full Text PDF

Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!