The changes in molecular characteristics of patients' blood after a totally therapeutic irradiation were studied by the NMR method. The changes in the intensity and shape of peaks attributed to methylene and methyl protons of fatty acids and lipoproteins were found in the NMR spectra of the blood plasma of the irradiated subjects. The data on the role of peroxide lipid oxidation in changes of lipid concentration in blood plasma were obtained. The changes in the composition of metabolites in the blood and their relative equilibrium level were found.

Download full-text PDF

Source

Publication Analysis

Top Keywords

blood plasma
12
molecular characteristics
8
blood
5
[effect whole-body
4
whole-body therapeutic
4
therapeutic gamma
4
gamma irradiation
4
irradiation patients
4
patients molecular
4
characteristics blood
4

Similar Publications

Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

Effect of heart rate on B-type natriuretic peptide in sinus rhythm.

Sci Rep

December 2024

Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.

B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!