It has been shown recently that androstenol and androstanol could modulate gene expression through the nuclear orphan receptors CAR (constitutive androstane receptor) and PXR (pregnane X receptor). Although, in the pig, androstenol is produced in high amounts and is active as a pheromone, its role in the human is ill defined. Androstenol possesses a structure similar to that of androgens, with the exception that it does not possess an oxygen at position 17 that is crucial for androgenic and estrogenic activity. It has been shown that human and boar testis homogenates could produce androstenol, but details of the biosynthetic pathway had not yet been elucidated. It has also been shown recently that androstenol could modulate the activity of CAR and PXR and the expression of some cytochrome P450 drug-metabolizing enzymes. We wanted to determine the precise biosynthetic pathway of androstenol and other closely related steroids. Using transformed human embryonic kidney (HEK-293) cells that stably express 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase, we have shown that these enzymes are able to efficiently transform the precursor 5,16-androstadien-3 beta-ol into androstenol. We thus provided evidence that androstenol, the ligand for CAR and PXR, is produced by the biosynthetic pathway of sex steroids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-0760(01)00057-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!