It is shown that the glutamate-NO-cGMP pathway is impaired in cerebellum of rats with portacaval anastomosis in vivo as assessed by in vivo brain microdialysis in freely moving rats. NMDA-induced increase in extracellular cGMP in the cerebellum was significantly reduced (by 27%) in rats with portacaval anastomosis. Activation of soluble guanylate cyclase by the NO-generating agent S-nitroso-N-acetyl-penicillamine and by the NO-independent activator YC-1 was also significantly reduced (by 35-40%), indicating that portacaval anastomosis leads to remarkable alterations in the modulation of guanylate cyclase in cerebellum. Moreover, the content of soluble guanylate cyclase was increased ca. two-fold in the cerebellum of rats with portacaval anastomosis. Activation of soluble guanylate cyclase by NO was higher in lymphocytes isolated from rats with portacaval anastomosis (3.3-fold) than in lymphocytes from control rats (2.1-fold). The results reported show that the content and modulation of soluble guanylate cyclase are altered in brain of rats with hepatic failure, resulting in altered function of the glutamate-NO-cGMP pathway in the rat in vivo. This may lead to alterations in cerebral processes such as intercellular communication, circadian rhythms, including the sleep-waking cycle, long-term potentiation, and some forms of learning and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(01)00128-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!