Packing characteristics of a model system mimicking cytoplasmic bacterial membranes.

Chem Phys Lipids

Institut für Biophysik und Röntgenstrukturforschung, Osterreichische Akademie der Wissenschaften, Schmiedlstrasse 6, A-8042, Graz, Austria.

Published: June 2001

The phase diagram of fully hydrated mixtures of dipalmitoylphosphatidylethanolamine and -phosphatidylglycerol was constructed and the coexistence lines of the solidus and liquidus curve calculated based on regular solution theory using two nonideality parameters for each of the phase to account for nonideal and nonsymmetric mixing. Both lipids show nonideal miscibility in the liquid-crystalline phase, while a region of immiscibility exists in the lamellar-gel phase between the mole fraction x(DPPE)=0.05-0.4. Two lines of three-phase coexistence around 35 and 40 degrees C reflects the presence of lipid domains predominantly composed of phosphatidylglycerol as well as of the mixed lipid system. This is reflected in the positive nonideality parameters of the gel phase obtained from the simulation of the phase diagram. Moreover, segregation of pure phosphatidylethanolamine domains was detected in mixtures x(DPPE)>0.9, which formed multilamellar liposomes, while unilamellarity was observed for the mixed lipid systems owing to the presence of the negatively charged phosphatidylglycerol. The packing constraints of these phospholipids, major components of cytoplasmic bacterial membranes, may be of importance in the interaction with various solutes like antimicrobial peptides, and were explained based on the nature of the headgroups and the molecular geometry of the phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-3084(01)00157-8DOI Listing

Publication Analysis

Top Keywords

cytoplasmic bacterial
8
bacterial membranes
8
phase diagram
8
nonideality parameters
8
mixed lipid
8
phase
6
packing characteristics
4
characteristics model
4
model system
4
system mimicking
4

Similar Publications

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

The Dps Protein Protects DNA in the Form of the Trimer.

Int J Mol Sci

January 2025

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia.

The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given.

View Article and Find Full Text PDF

The type III secretion system (T3SS) is a nano-machine that allows Gram-negative bacteria to alter eukaryotic host biology by directly delivering effector proteins from the bacterial cytoplasm. Protein delivery based on the bacterial T3SS has been widely used in research in biology. This review explores recent advancements in the structure and function of the T3SS.

View Article and Find Full Text PDF

Genome Sequencing Reveals the Potential of sp. Strain UNJFSC003 for Hydrocarbon Bioremediation.

Genes (Basel)

January 2025

Departamento de Agronomía, Universidad Nacional José Faustino Sánchez Carrión (UNJFSC), Lima 15136, Peru.

Bioremediation induced by bacteria offers a promising alternative for the contamination of aromatic hydrocarbons due to their metabolic processes suitable for the removal of these pollutants, as many of them are carcinogenic molecules and dangerous to human health. Our research focused on isolating a bacterium from the rhizosphere of the tara tree with the ability to degrade polycyclic aromatic hydrocarbons, using draft genomic sequencing and computational analysis. sp.

View Article and Find Full Text PDF

The Passage of Chaperonins to Extracellular Locations in Requires a Functional Dot/Icm System.

Biomolecules

January 2025

Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.

HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!