The characteristics of lipid assemblies are important for the functions of biological membranes. This has led to an increasing utilization of molecular dynamics simulations for the elucidation of the structural features of biomembranes. We have applied the self-organizing map (SOM) to the analysis of the complex conformational data from a 1-ns molecular dynamics simulation of PLPC phospholipids in a membrane assembly. Mapping of 1.44 million molecular conformations to a two-dimensional array of neurons revealed, without human intervention, the main conformational features in hours. Both the whole molecule and the characteristics of the unsaturated fatty acid chains were analyzed. All major structural features were easily distinguished, such as the orientational variability of the headgroup, the mainly trans state dihedral angles of the sn-1 chain, and both straight and bent conformations of the unsaturated sn-2 chain. Furthermore, presentation of the trajectory of an individual lipid molecule on the map provides information on conformational dynamics. The present results suggest that the SOM method provides a powerful tool for routinely gaining rapid insight to the main molecular conformations as well as to the conformational dynamics of any simulated molecular assembly without the requirement of a priori knowledge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0025853 | DOI Listing |
Hepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Molecular and Cellular Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K.
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to interrogate protein structure and dynamics. With the ability to study almost any protein without a size limit, including intrinsically disordered ones, HDX-MS has shown fast growing importance as a complement to structural elucidation techniques. Current experiments compare two or more related conditions (sequences, interaction partners, excipients, conformational states, etc.
View Article and Find Full Text PDFSci Adv
January 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.
Proc Natl Acad Sci U S A
February 2025
Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany.
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.
CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!