Synaptic vesicle biogenesis involves the recycling of synaptic vesicle components by clathrin-mediated endocytosis from the presynaptic membrane. stoned B, a protein encoded by the stoned locus in Drosophila melanogaster has been shown to regulate vesicle recycling by interacting with synaptotagmin. We report here the identification and characterization of a human homolog of stoned B (hStnB). Human stoned B is a brain-specific protein which co-enriches with other endocytic proteins such as AP-2 in a crude synaptic vesicle fraction and at nerve terminals. A domain with homology to the medium chain of adaptor complexes binds directly to both AP-2 and synaptotagmin and competes with AP-2 for the same binding site within synaptotagmin. Finally we show that the mu 2 homology domain of hStnB stimulates the uncoating of both clathrin and AP-2 adaptors from clathrin-coated vesicles. We hypothesize that hStnB regulates synaptic vesicle recycling by facilitating vesicle uncoating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083948 | PMC |
http://dx.doi.org/10.1093/embo-reports/kve134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!