Endotoxin stimulated cytokine production in rat vascular smooth muscle cells.

Am J Physiol Heart Circ Physiol

Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.

Published: August 2001

Because inflammatory processes may promote the development of atherosclerosis, we examined the activation of cytokine genes in rat vascular smooth muscle cells in vitro after treatment with bacterial lipopolysaccharide (LPS). Interleukin-1 (IL-1), IL-6 and tumor necrosis factor-alpha (TNF-alpha) mRNA increased in response to LPS. Activation of nuclear factor-kappaB (NF-kappaB) presumably results in NF-kappaB binding to regulatory regions of target genes and activating transcription. We therefore compared the kinetics of NF-kappaB activation, cytokine message production, and TNF-alpha secretion. Maximum active NF-kappaB was found at 30 min after the addition of LPS and decreased thereafter. Increased IL-6 mRNA was detected at 30 min, increased TNF-alpha mRNA at 60 min, and increased IL-1 mRNA at 120 min. Secretion of TNF-alpha was dependent on LPS concentration and was first detected 120 min after LPS addition. Aspirin, which has been shown to inhibit NF-kappaB activation and cytokine secretion in other cell types, did not inhibit NF-kappaB activation or TNF-alpha secretion. However, aspirin reduced the amount of both TNF-alpha and IL-6 mRNA present 30 min after LPS addition by half (P < 0.05).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.2001.281.2.H661DOI Listing

Publication Analysis

Top Keywords

activation cytokine
12
nf-kappab activation
12
rat vascular
8
vascular smooth
8
smooth muscle
8
muscle cells
8
tnf-alpha mrna
8
tnf-alpha secretion
8
il-6 mrna
8
min increased
8

Similar Publications

Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.

View Article and Find Full Text PDF

Therapeutic Potential of Vanillic Acid in Ulcerative Colitis Through Microbiota and Macrophage Modulation.

Mol Nutr Food Res

January 2025

2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.

This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.

View Article and Find Full Text PDF

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).

Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.

View Article and Find Full Text PDF

Enhancing NK cell-mediated tumor killing of B7-H6 cells with bispecific antibodies targeting allosteric sites of NKp30.

Mol Ther Oncol

March 2025

Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany.

In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6 tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!