Metals formed from light elements are predicted to exhibit intriguing states of electronic order. Of these materials, those containing boron are of considerable current interest because of their relatively high superconducting temperatures. We have investigated elemental boron to very high pressure using diamond anvil cell electrical conductivity techniques. We find that boron transforms from a nonmetal to a superconductor at about 160 gigapascals (GPa). The critical temperature of the transition increases from 6 kelvin (K) at 175 GPa to 11.2 K at 250 GPa, giving a positive pressure derivative of 0.05 K/GPa. Although the observed metallization pressure is compatible with the predictions of first-principles calculations, superconductivity in boron remains to be explored theoretically. The present results constitute a record pressure for both electrical conductivity studies and investigations of superconductivity in dense matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1062286 | DOI Listing |
Phys Chem Chem Phys
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P. R. China.
Exploration of new superconducting or superhard transition-metal borides has attracted extensive interest in the past few decades. In this study, we conducted comprehensive theoretical investigations in the scandium-boron binary system by employing a structural search method based upon first-principles density functional theory. Among the six predicted superconducting scandium-borides, ScB (3̄) has the highest superconducting transition temperature = 12.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.
Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.
View Article and Find Full Text PDFNat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFNature
December 2024
Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!