Local motion detectors can only provide the velocity component perpendicular to a moving line that crosses their receptive field, leading to an ambiguity known as the "aperture problem". This problem is solved exactly for rigid objects translating in the screen plane via the intersection of constraints (IOC). In natural scenes, however, object motions are not restricted to fronto-parallel translations, and several objects with distinct motions may be present in the visual space. Under these conditions the usual IOC construction is no longer valid, which raises questions as its use as a basis for spatial integration and selection of motion signals in uniform and non-uniform velocity fields. The influence of the motion of random dots on the perceived direction of a horizontal line grating was measured, when dots and lines are seen through different apertures. The random dots were mapped on a plane that translates in a fronto-parallel plane (uniform 2D translation) or in depth (3D, corresponding to a non-uniform projected velocity field, either expanding or contracting). The grating was either moving rigidly with the dots or in the opposite direction. Subjects' responses show that the direction of line grating movement was reliably influenced only in conditions consistent with rigid motion; where there was a reliable influence, the perceived direction was consistent with the dot motion pattern. This finding points to the existence of a motion-based selection mechanism that operates prior to the disambiguation of the line movement direction. Disambiguation could occur for both uniform and non-uniform velocity fields, even though in the last case none of the individual dots indicated the proper direction in 2D velocity space. Finally, the capture by non-uniform motion patterns was less robust than that by uniform 2D translations, and could be disrupted by manipulations of the shape and size of the apertures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6989(01)00022-0 | DOI Listing |
Med Sci Sports Exerc
November 2024
Human Movement Biomechanics research group, Department of Movement Science, KU Leuven, BELGIUM.
Purpose: Achilles tendinopathy (AT) is associated with altered tendon's morphological and mechanical properties, yet it is unclear whether these properties are reversed upon mechanical loading to promote tendon healing. This study aims to determine the extent to which pathological tendon's morphological and mechanical properties adapt throughout a 12-week eccentric rehabilitation protocol.
Methods: Forty participants with midportion AT were recruited and participated in a 12-week eccentric rehabilitation program.
Int J Hyperthermia
December 2025
Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.
This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany.
Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Suzhou XDM 3D Printing Technology Co., Ltd., Suzhou 215000, China.
The stress distribution within the struts of lattice metamaterials is non-uniform under compressive loads, with stress concentrations typically occurring at the node regions. Inspired by bamboo, this study proposes a type of body-centered cubic (BCC) lattice metamaterial with tapered prism struts (BCCT). The compressive behavior, deformation modes, mechanical properties, and failure mechanisms of BCCT lattice metamaterials are systematically analyzed using finite element methods and validated through compression tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!