Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step.

Virology

Department of Molecular Genetics and Microbiology, Graduate Program in Molecular Biosciences at UMDNJ/Rutgers Universities, The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA.

Published: July 2001

Programmed ribosomal frameshifting is utilized by a number of RNA viruses to ensure the correct ratio of viral structural to enzymatic proteins for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, inhibiting virus propagation. Two yeast viruses that induce host cell ribosomes to shift translational reading frame were used as tools to explore the interactions between viruses and host cellular protein synthetic machinery. Previous studies showed that the ribosome-inactivating protein pokeweed antiviral protein specifically inhibited propagation of the Ty1 retrotransposable element of yeast as a consequence of inhibition of programmed +1 ribosomal frameshifting. Here, complementary genetic and pharmacological approaches were employed to test whether inhibition of Ty1 retrotransposition is a general feature of alterations in the translocation step of elongation and +1 frameshifting. The results demonstrate that cells harboring a variety of mutant alleles of two host-encoded proteins that are involved in translocation, eukaryotic elongation factor-2 and the ribosome-associated protein RPP0, have Ty1 propagation defects. We also show that sordarin, a fungus-specific inhibitor of eEF-2 function, specifically inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition. These findings serve to link inhibition of Ty1 retrotransposition and +1 frameshifting to changes in the translocation step of elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.2001.0997DOI Listing

Publication Analysis

Top Keywords

ty1 retrotransposition
16
programmed ribosomal
16
ribosomal frameshifting
16
translocation step
12
protein synthetic
8
inhibition ty1
8
step elongation
8
frameshifting
7
ty1
6
protein
5

Similar Publications

The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated.

View Article and Find Full Text PDF

Retrotransposons and retroviruses shape genome evolution and can negatively impact genome function. and its close relatives harbor several families of LTR-retrotransposons, the most abundant being Ty1 in several laboratory strains. The cytosolic foci that nucleate Ty1 virus-like particle (VLP) assembly are not well understood.

View Article and Find Full Text PDF

Unlabelled: Retrotransposons and retroviruses shape genome evolution and can negatively impact genome function. and its close relatives harbor several families of LTR-retrotransposons, the most abundant being Ty1 in several laboratory strains. The cytosolic foci that nucleate Ty1 virus-like particle (VLP) assembly are not well-understood.

View Article and Find Full Text PDF

Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress.

Front Plant Sci

December 2022

State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China.

Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element.

View Article and Find Full Text PDF

Background: Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!