The relaxation dynamics of the excited electronic states of retinal in bacteriorhodopsin by two-pump-probe femtosecond studies.

Proc Natl Acad Sci U S A

Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.

Published: July 2001

We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S(1)) populated by different modes. In the first mode, a direct (S(0) --> S(1)) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S(1) state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S(0) --> S(1) transition whereas the second pulse excites the S(1) --> S(n) transition. The nonradiative relaxation from the S(n) state populates the lowest excited state. Our results suggest that the S(1) state relaxes faster when populated nonradiatively from the S(n) state than when pumped directly by the S(0) --> S(1) excitation. Additionally, the S(n) --> S(1) nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the S(n) state populates a different surface (called S'(1)) than the one being directly excited (S(1)). The possible involvement of the A(g) type states, the J intermediate, and the conical intersection leading to the S(0) or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC37460PMC
http://dx.doi.org/10.1073/pnas.141220198DOI Listing

Publication Analysis

Top Keywords

lowest excited
12
excited state
12
state
9
relaxation dynamics
8
state populated
8
pulse excites
8
excites -->
8
--> transition
8
nonradiative relaxation
8
state populates
8

Similar Publications

Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing.

View Article and Find Full Text PDF

We present the theory and implementation of a fully variational wave function-density functional theory (DFT) hybrid model, which is applicable to many cases of strong correlation. We denote this model as the multiconfigurational self-consistent on-top pair-density functional theory (MC-srPDFT) model. We have previously shown how the multiconfigurational short-range DFT (MC-srDFT) hybrid model can describe many multiconfigurational cases of any spin symmetry and also state-specific calculations on excited states [Hedegård et al.

View Article and Find Full Text PDF

Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing central nervous system disease most commonly associated with aquaporin-4 antibodies (AQP4-Ab) and Myelin oligodendrocyte glycoprotein (MOG) antibodies. These demyelinating disorders influence cortical excitability, which has been studied using advanced imaging techniques and transcranial magnetic stimulation (TMS) in our study.

Methods: This is a prospective study of 30 subjects.

View Article and Find Full Text PDF

We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!