Cyclin-dependent kinase (CDK)7-cyclin H, the CDK-activating kinase (CAK) and TFIIH-associated kinase in metazoans can be activated in vitro through T-loop phosphorylation or binding to the RING finger protein MAT1. Although the two mechanisms can operate independently, we show that in a physiological setting, MAT1 binding and T-loop phosphorylation cooperate to stabilize the CAK complex of Drosophila. CDK7 forms a stable complex with cyclin H and MAT1 in vivo only when phosphorylated on either one of two residues (Ser164 or Thr170) in its T-loop. Mutation of both phosphorylation sites causes temperature-dependent dissociation of CDK7 complexes and lethality. Furthermore, phosphorylation of Thr170 greatly stimulates the activity of the CDK7- cyclin H-MAT1 complex towards the C-terminal domain of RNA polymerase II without significantly affecting activity towards CDK2. Remarkably, the substrate-specific increase in activity caused by T-loop phosphorylation is due entirely to accelerated enzyme turnover. Thus phosphorylation on Thr170 could provide a mechanism to augment CTD phosphorylation by TFIIH-associated CDK7, and thereby regulate transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125544 | PMC |
http://dx.doi.org/10.1093/emboj/20.14.3749 | DOI Listing |
Nat Commun
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.
View Article and Find Full Text PDFNat Commun
August 2024
Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations.
View Article and Find Full Text PDFEur J Med Chem
October 2024
Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA. Electronic address:
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2024
Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
Cyclin-dependent kinase 2 (CDK2) regulates cell cycle checkpoints in the synthesis and mitosis phases and plays a pivotal role in cancerous cell proliferation. The activation of CDK2, influenced by various protein signaling pathways, initiates the phosphorylation process. Due to its crucial role in carcinogenesis, CDK2 is a druggable hotspot target to suppress cancer cell proliferation.
View Article and Find Full Text PDFSci Adv
May 2024
Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.
SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!