We consider vapor bubbles in microchannels in which the vapor is produced by a heater element and condenses in cooler parts of the interface. The free boundary problem is formulated for a long steady-state bubble in a rectangular channel with a heated bottom. Lubrication-type equations are derived for the shape of the liquid-vapor interface in a cross-sectional plane and in the regime for which the vapor phase fills most of the cross section. These equations are then solved numerically over a range of parameter values with given temperature profiles in the walls and subject to a global integral condition requiring evaporation near the heater to balance condensation in colder areas of the interface. Our results show that depending on the temperature, the side walls can be either dry or covered with a liquid film and we identify criteria for these two different regimes. The asymptotic method breaks down in the limit when capillary condensation becomes important near the bubble top and a different approach is used to determine the shape of the bubble in this limit. Solutions here involve localized regions of large mass fluxes, which are asymptotically matched to capillary-statics regions where the heat transfer is negligible. Copyright 2001 Academic Press.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jcis.2001.7562 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Física, Benemérita Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570, Mexico.
Leidenfrost puddles exhibit erratic bubble bursts that release vapor trapped beneath the liquid, becoming amorphous and unstable. We report a method to stabilize and design a Leidenfrost puddle. When a thin hydrophilic layer with a suitable design is placed over the liquid, the puddle adopts the layer shape due to adhesive forces and becomes stable.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208106, India.
The hydrodynamic and thermal interactions between neighboring vapor bubbles on hot surfaces play a crucial role in heat transport and flow characteristics. To investigate these interactions, we conducted numerical simulations of saturated vapor bubbles in a two-dimensional square enclosure filled with liquid water. The water was heated at the bottom and cooled at the top to replicate boiling at 100^{∘}C and normal atmospheric pressure.
View Article and Find Full Text PDFSleep Breath
November 2024
Department of Clinical Neurophysiology and Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
Purpose: This study aimed to compare cervical proprioception and related biomechanical factors among patients with Obstructive Sleep Apnea (OSA) and asymptomatic controls.
Methods: In this case-control study, polysomnography scores (apnea-hypopnea index-AHI) were examined to determine the disease severity of the OSA group. Also, we evaluated cervical proprioception by using a laser pointer to detect joint repositioning error sense in cervical rotational movements.
Talanta
March 2025
School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. Electronic address:
Cellular innate immune response is closely related to cGAS-STING pathway and PD-1/PD-L1 immune checkpoint blockade. The lack of tissue penetration of STING agonists and nanomedicines in conventional approaches reduces their immunotherapeutic efficacy. At the same time, because the cGAS-STING signaling pathway is silent in many breast cancer cells, it cannot play its role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!