Background: Fukuyama-type congenital muscular dystrophy (FCMD) is an autosomal recessive disorder characterized by severe dystrophic muscle wasting from birth or early infancy with structural brain abnormalities. The gene for FCMD is located on chromosome 9q31, and encodes a novel protein named fukutin. The function of fukutin is not known yet, but is suggested to be an enzyme that modifies the cell-surface glycoprotein or glycolipids.
Objective: To elucidate the roles of fukutin gene mutation in skeletal and cardiac muscles and brain.
Methods: Immunohistochemical and immunoblot analyses were performed in skeletal and cardiac muscles and brain tissue samples from patients with FCMD and control subjects.
Results: The authors found a selective deficiency of highly glycosylated alpha-dystroglycan, but not beta-dystroglycan, on the surface membrane of skeletal and cardiac muscle fibers in patients with FCMD. Immunoblot analyses also showed no immunoreactive band for alpha-dystroglycan, but were positive for beta-dystroglycan in FCMD in skeletal and cardiac muscles.
Conclusion: The current findings suggest a critical role for fukutin gene mutation in the loss or modification of glycosylation of the extracellular peripheral membrane protein, alpha-dystroglycan, which may cause a crucial disruption of the transmembranous molecular linkage of muscle fibers in patients with FCMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1212/wnl.57.1.115 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.
View Article and Find Full Text PDFPLoS One
January 2025
Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.
Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.
J Neurol
January 2025
Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil.
Background: Skeletal and cardiac muscle damage have been increasingly recognized in female carriers of DMD pathogenic variants (DMDc). Little is known about cognitive impairment in these women or whether they have structural brain damage.
Objective: To characterize the cognitive profile in a Brazilian cohort of DMDc and determine whether they have structural brain abnormalities using multimodal MRI.
J Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.
Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!