Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The evolution of the intensity profile of transversely excited atmospheric CO2 laser pulses is investigated within the intensity moment formalism. The beam quality factor M2 is used to study the mode evolution. Attention is focused on the influence of both the gas mixture (N2 :CO2 :He) and the diameter of an intracavity diaphragm placed to attenuate higher-order modes. The degree of accuracy that can be attained by approximating the laser field amplitude by means of the lower-order terms of a Hermite-Gauss expansion is also analyzed. In particular, a bound for the truncation error is given in terms of two time-resolved spatial parameters, namely the beam width and the M2 parameter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/josaa.18.001734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!