Timing cell-cycle exit and differentiation in oligodendrocyte development.

Novartis Found Symp

MRC Developmental Neurobiology Programme, MRC Laboratory for Molecular Cell Biology and the Biology Department, University College London, London WC1E 6BT, UK.

Published: February 2002

During animal development many cells permanently stop dividing and terminally differentiate. For the most part, the mechanisms that control when the cells exit the cell cycle and differentiate are not known. We have been studying the mechanisms in the oligodendrocyte cell lineage. Studies of oligodendrocyte precursor cells (OPCs) in culture suggest that each OPC has a built-in timing mechanism that helps determine when the cell stops dividing and differentiates. This intrinsic timer consists of at least two components--a timing component, which measures elapsed time, and an effector component, which stops cell division and initiates differentiation at the appropriate time. The timer seems to involve both transcriptional and posttranscriptional mechanisms, with some proteins progressively increasing and others progressively decreasing over time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0470846666.ch9DOI Listing

Publication Analysis

Top Keywords

timing cell-cycle
4
cell-cycle exit
4
exit differentiation
4
differentiation oligodendrocyte
4
oligodendrocyte development
4
development animal
4
animal development
4
development cells
4
cells permanently
4
permanently dividing
4

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group).

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Circadian rhythm is a physiological process that oscillates in a 24 h cycle. It has a complex connection with the function of the human immune system and even with the development of tumours. Previous studies demonstrated the time-dependent effects of chemotherapy and radiotherapy; however, there are few studies on the timing effects of immunotherapy.

View Article and Find Full Text PDF

Background/objectives: Tonsil-derived mesenchymal stem cells (TMSCs) are in the limelight in regenerative medicine due to their high proliferation and differentiation potential. It is important to conduct studies to determine the optimal conditions for achieving the maximum yield while maintaining the optimal differentiation capacity of TMSCs.

Methods: This study explores the impact of serial subculture on TMSCs by analyzing gene expression at passages 2, 4, 6, and 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!