The Penelope element is the key element responsible for mobilization of other transposable elements in the course of hybrid dysgenesis in Drosophila virilis. Penelope has an unusually complex, highly variable organization in all studied species of the virlis group. Thc BRIDGE1 element from the fish Fugu rubripes is homologous to Penelope, and database searches detected additional homologous sequences among Expressed Sequence Tags from the flatworm Schistosoma mansonii and the nematode Ancylostoma caninum. Phylogenetic analysis shows that the reverse transcriptase of the Penelope group does not belong to any of the characterized major retroelement lineages, but apparently represents a novel branch of non-LTR retroelements. Sequence profile analysis results in the prediction that the C-terminal domain of the Penelope polyprotein is an active endonuclease related to intron-encoded endonucleases and the bacterial repair endonuclease UvrC, which could function as an integrase. No retroelements containing a predicted endonuclease of this family have been described previously. Phylogenetic analysis of Penelope copies isolated from several species of the virilis group reveals two subfamilies of Penelope elements, one of which includes full-length copies whose nucleotide sequences are almost identical, whereas the other one consists of highly diverged defective copies. Phylogenetic analysis of Penelope suggests both vertical transmission of the element and probable horizontal transfers. These findings support the notion that Penelope invasions occurred repeatedly in the evolution of the virilis group.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002390010174DOI Listing

Publication Analysis

Top Keywords

phylogenetic analysis
12
penelope
10
analysis penelope
8
virilis group
8
group
5
structure evolution
4
evolution penelope
4
virilis
4
penelope virilis
4
virilis species
4

Similar Publications

Whole-genome automated assembly pipeline for strains from reference, and clinical samples using the integrated CtGAP pipeline.

NAR Genom Bioinform

March 2025

Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.

Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.

View Article and Find Full Text PDF

Hepatic infection in a dog with cavitary lung disease.

Can Vet J

January 2025

Central Victoria Veterinary Hospital, VCA Canada, 760 Roderick Street, Victoria, British Columbia V8X 2R3 (Xie, Seguin, Brownlee, Boller); Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6 (Boller).

A 9-year-old neutered male cairn terrier dog was initially presented because of inappetence, increased respiratory effort, and occasional coughing. A cavitary lung mass was diagnosed using CT and removed with lung lobectomy. Histopathology of the mass revealed necrosuppurative inflammation with acid-fast rod bacteria in macrophages, with spp.

View Article and Find Full Text PDF

Advancements in DNA sequencing technology have facilitated the generation of a vast number of DNA sequences, posing opportunities and challenges for constructing large phylogenetic trees. DNA barcode sequences, particularly COI, represent extensive orthologous sequences suitable for phylogenetic analysis. Phylogenetic placement analysis offers a promising method to integrate COI data into tree-building efforts, yet the impacts of backbone tree completeness and species composition remain under-explored.

View Article and Find Full Text PDF

Estuaries are ecologically sensitive areas influenced by river regulation. Knowledge of how marine megabenthos responds to river regulation and artificial flooding events remains limited. The study aims to provide a comprehensive understanding of the impacts of river regulation on marine megabenthic fauna.

View Article and Find Full Text PDF

In this study, we performed a comparative analysis based on a total of 255 spider mitogenomes and four outgroups, of which the mitogenomes of 39 species were assembled de novo, to explore the phylogenetic relationships and the adaptive evolution of mitogenomes. Results showed that had the longest mitochondrial length and the most pronounced codon preference to be UUA, followed by CCU. Codon usage frequencies were similar between families and codon usage in the mitogenome of spiders was mainly influenced by natural selection pressures rather than G/C mutation bias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!