Previous results have shown that in rat portal vein myocytes the betagamma dimer of the G(13) protein transduces the angiotensin II-induced stimulation of calcium channels and increase in intracellular Ca(2+) concentration through activation of phosphoinositide 3-kinase (PI3K). In the present work we determined which class I PI3K isoforms were involved in this regulation. Western blot analysis indicated that rat portal vein myocytes expressed only PI3Kalpha and PI3Kgamma and no other class I PI3K isoforms. In the intracellular presence of an anti-p110gamma antibody infused by the patch clamp pipette, both angiotensin II- and Gbetagamma-mediated stimulation of Ca(2+) channel current were inhibited, whereas intracellular application of an anti-p110alpha antibody had no effect. The anti-PI3Kgamma antibody also inhibited the angiotensin II- and Gbetagamma-induced production of phosphatidylinositol 3,4,5-trisphosphate. In Indo-1 loaded cells, the angiotensin II-induced increase in [Ca(2+)](i) was inhibited by intracellular application of the anti-PI3Kgamma antibody, whereas the anti-PI3Kalpha antibody had no effect. The specificity of the anti-PI3Kgamma antibody used in functional experiments was ascertained by showing that this antibody did not recognize recombinant PI3Kalpha in Western blot experiments. Moreover, anti-PI3Kgamma antibody inhibited the stimulatory effect of intracellularly infused recombinant PI3Kgamma on Ca(2+) channel current without altering the effect of recombinant PI3Kalpha. Our results show that, although both PI3Kgamma and PI3Kalpha are expressed in vascular myocytes, the angiotensin II-induced stimulation of vascular L-type calcium channel and increase of [Ca(2+)](i) involves only the PI3Kgamma isoform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M102582200 | DOI Listing |
JCI Insight
January 2025
Section of Vascular Surgery, Department of Surgery, and.
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.
View Article and Find Full Text PDFiScience
January 2025
Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.
View Article and Find Full Text PDFInt Heart J
January 2025
Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University.
Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!