Objective: To integrate spatial three-dimensional information concerning the pyramidal tracts into a customized system for frameless neuronavigation during brain tumor surgery.

Methods: Four consecutive patients with intracranial tumors in eloquent areas underwent diffusion-weighted and anatomic magnetic resonance imaging studies within 48 hours before surgery. Diffusion-weighted datasets were merged with anatomic data for navigation purposes. The pyramidal tracts were segmented and reconstructed for three-dimensional visualization. The reconstruction results, together with the fused-image dataset, were available during surgery in the environment of a customized neuronavigation system.

Results: In all four patients, the combination of reconstructed data and fused images was a helpful additional source of information concerning the tumor seat and topographical interaction with the pyramidal tract. In two patients, intraoperative motor cortex stimulation verified the tumor seat with regard to the precentral gyrus.

Conclusion: Diffusion-weighted magnetic resonance imaging allows individual estimation of large fiber tracts applicable as important information in intraoperative neuronavigation and in planning brain tumor resection. A three-dimensional representation of fibers associated with the pyramidal tract during brain tumor surgery is feasible with the presented technique and is a helpful adjunct for the neurosurgeon. The main drawbacks include the length of time required for the segmentation procedure, the lack of direct intraoperative control of the pyramidal tract position, and brain shift. However, mapping of large fiber tracts and its intraoperative use for neuronavigation have the potential to increase the safety of neurosurgical procedures and to reduce surgical morbidity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006123-200107000-00013DOI Listing

Publication Analysis

Top Keywords

pyramidal tract
16
brain tumor
16
three-dimensional visualization
8
tumor surgery
8
pyramidal tracts
8
magnetic resonance
8
resonance imaging
8
tumor seat
8
large fiber
8
fiber tracts
8

Similar Publications

A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.

View Article and Find Full Text PDF

Cerebrotendinous Xanthomatosis occurs at high frequency in Ashkenazi Jews.

Mol Genet Metab

January 2025

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. Electronic address:

Cerebrotendinous Xanthomatosis (CTX) is a treatable, inborn error of bile acids metabolism caused by pathogenic variants in CYP27A1. CTX is a multi-organ system disorder that progresses over decades. Clinical features include cerebellar dysfunction, pyramidal tract dysfunction, cognitive deficits and decline, peripheral neuropathy, chronic diarrhea, bilateral cataracts, and tendon xanthomas.

View Article and Find Full Text PDF

There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.

View Article and Find Full Text PDF

Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment.

Tissue Cell

January 2025

Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain. Electronic address:

The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years).

View Article and Find Full Text PDF

Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!