The tumour suppressor protein, p53, is involved in the regulation of apoptosis and growth arrest following DNA damage. Mutations of the p53 gene are found in 50-55% of all human cancers (Hollstein et al. Nucl. Acid Res. 22 (1994) 3551), including hepatocellular carcinomas. Phenobarbitone (PB) is a non-genotoxic hepatocarcinogen in rats and mice. With commercial availability of mice where one or both alleles of p53 have been removed we have examined the effect of PB in wild type C57BL/6J mice (p53 +/+), and p53 deficient mice (+/- and -/- p53) to determine whether p53 plays a role in the PB induced liver response. In each strain of mice, chronic administration caused liver enlargement, which was associated with centrilobular hepatocyte hypertrophy and a transient hyperplasia. In addition, an increase in centrilobular epidermal growth factor receptor and its ligand, transforming growth factor alpha and a decrease in mannose-6-phosphate receptor and its mitoinhibitory ligand, TGFbeta1 was also observed immunohistochemically. The similar response in all three strains indicates that p53 probably plays no role in the early PB induced liver effects of hypertrophy and changes in growth factor expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(01)00349-6 | DOI Listing |
Mol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFGeroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFPurinergic Signal
January 2025
International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!