Electron-rich rods as building blocks for Sb strips and Te sheets.

J Am Chem Soc

Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0371, USA.

Published: July 2001

We analyze the bonding in a number of networks of heavy main group elements comprised of finite-length linear chains fused at right angles. Isolated linear chain building blocks may be understood easily by analogy with three-orbital four-electron "hypervalent" bonding picture in such molecules as I(3)(-) and XeF(2). After deriving the appropriate electron-counting rules for such linear units, we proceed in an aufbau to fuse these chains into simple (and not so simple) infinite networks. It is proposed that (a) infinite Sb(3) ribbons of vertex sharing squares are stable for an electron count of 20 electrons per three atoms (i.e., ); (b) sidewise fused Sb double ribbons are stable for an electron count of 38 electrons per six atoms (i.e., ); (c) Sb(4) strips cut from a square lattice are stable at the electron count of 24 electrons per four atoms (i.e., ); (d) Te(6) defect square sheets are stable at the electron count of 40 electrons per six atoms (i.e., ). The electronic structures of the solid-state compounds containing these networks, namely La(12)Mn(2)Sb(30), alpha-ZrSb(2), beta-ZrSb(2), Cs(3)Te(22), and Cs(4)Te(28), are elaborated. We propose preferred electron counts for two hypothetical Sb ribbons derived from the Sb(3) ribbon in La(12)Mn(2)Sb(30). A possibility of geometry distortion modulation by excess charge in lattices comprised of even-membered linear units is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja003420xDOI Listing

Publication Analysis

Top Keywords

stable electron
16
electron count
16
count electrons
16
electrons atoms
12
building blocks
8
linear units
8
electron
5
electron-rich rods
4
rods building
4
blocks strips
4

Similar Publications

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

Redox-induced dimerisations of a phosphacyclic biradicaloid.

Chem Commun (Camb)

January 2025

Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.

Despite the first examples being isolated more than two decades ago, little is known about the redox chemistry of stable phosphacyclic biradicaloids. Here, we demonstrate that a biradicaloid featuring a diphosphaindenyl backbone is able to undergo both oxidation and reduction reactions. One-electron oxidation results in the formation of a dicationic cage compound structurally related to an isomer of hypostrophene (CH).

View Article and Find Full Text PDF

Molecular Phosphide Complexes of Zirconium.

J Am Chem Soc

January 2025

Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States.

Molecular Zr phosphides are extremely rare, with no examples containing a one-coordinated and terminal triple-bonded phosphorus atom. We report here an isolable and relatively stable Zr phosphide complex, [(PN)Zr≡P{μ-Na(OEt)}] (), stemming from a cyclometalated Zr-hydride, [(PN)(PN')Zr(H)] (), and NaPH. Complex is prepared from two- or one-electron reductions of precursors [(PN)ZrCl] () or metastable Zr[(PN)ZrCl], respectively.

View Article and Find Full Text PDF

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!