Construction of an Escherichia coli knockout strain for functional analysis of tRNA(Asp).

J Mol Biol

Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, E. B. Fred Hall, Madison, WI 53706-1567, USA.

Published: July 2001

The specific aminoacylation of tRNA is critical for translation of the genetic code. A molecular description of aminoacylation requires knowledge of the relevant three-dimensional structures, biochemical parameters and the structure-function relationship of the synthetase and its substrate tRNA. Extensive structural and biochemical data are available on the aspartic acid system of Escherichia coli, but there is a paucity of cellular functional data. We have developed a system to overcome this deficiency by engineering an E. coli knockout tRNA(Asp) strain, thereby allowing a penetrating analysis of tRNA(Asp) structure and function under conditions that prevail in the cell.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2001.4785DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli knockout
8
analysis trnaasp
8
construction escherichia
4
knockout strain
4
strain functional
4
functional analysis
4
trnaasp specific
4
specific aminoacylation
4
aminoacylation trna
4

Similar Publications

The influx of whole genome sequencing (WGS) data in the public health and clinical diagnostic sectors has created a need for data analysis methods and bioinformatics expertise, which can be a bottleneck for many laboratories. At Sciensano, the Belgian national public health institute, an intuitive and user-friendly bioinformatics tool portal was implemented using Galaxy, an open-source platform for data analysis and workflow creation. The Galaxy @Sciensano instance is available to both internal and external scientists and offers a wide range of tools provided by the community, complemented by over 50 custom tools and pipelines developed in-house.

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells.

View Article and Find Full Text PDF

Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.

View Article and Find Full Text PDF

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!