Objective: It has been reported that stem cell factor (SCF) promotes cell survival in primary cultured human erythroid colony-forming cells (ECFC). Given the heterogeneous nature of ECFC, which may affect interpretation of the data, we purified c-kit+ ECFC and investigated the specificity and mechanisms of the anti-apoptotic effects of SCF on these cells.

Materials And Methods: Glycophorin A+ (GPA+) c-kit+ cells were purified from primary cultured ECFC derived from purified human CD34+ cells. The GPA+c-kit- and nonerythroid cells were generated from the same CD34+ cells. Apoptosis of ECFC was investigated in the absence or presence of SCF and erythropoietin (EPO) in serum-free medium. DNA fragmentation was measured with enzyme linked immunosorbent assay for oligonucleosome-sized DNA, gel electrophoresis, and annexin V labeling. Characterization of expanded cells and enriched cells was performed using multiparameter flow cytometry. For Akt assay, cells were lysed and the cleared lysates subjected to SDS-PAGE followed by Western blotting.

Results: In GPA+c-kit+ cells, deprivation of cytokine caused rapid DNA fragmentation within 4 hours that reached a maximum at 6 hours. This was partially but clearly prevented by SCF or EPO. In contrast, no significant DNA fragmentation was seen in GPA+c-kit- and nonerythroid cells within 24 hours. PP2, a specific Src family kinase inhibitor, but not its inactive analogue PP3, reversed the anti-apoptotic effects of SCF. PP2 also inhibited SCF-induced phosphorylation of Akt.

Conclusion: These data indicate that SCF protects purified human GPA+c-kit+ cells from apoptosis and suggest that kit-mediated Src kinase activation is involved in Akt activation and cell survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-472x(01)00660-9DOI Listing

Publication Analysis

Top Keywords

cells
12
cells apoptosis
12
dna fragmentation
12
stem cell
8
cell factor
8
cell survival
8
primary cultured
8
ecfc investigated
8
anti-apoptotic effects
8
effects scf
8

Similar Publications

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).

View Article and Find Full Text PDF

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.

View Article and Find Full Text PDF

β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents.

View Article and Find Full Text PDF

This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!