A real-time optical biosensor study on the interactions between putidaredoxin reductase (PdR), putidaredoxin (Pd), and cytochrome P450cam (P450cam) within the P450cam system was conducted. The binary Pd/P450cam and Pd/PdR complexes were revealed and kinetically characterized. The dominant role of electrostatic interactions in formation of productive electron transfer complexes was demonstrated. It was found that Pd/P450cam complex formation and decay obeys biphasic kinetics in contrast to the monophasic one for complexes formed by other redox partners within the system. Evidence for PdR/P450cam complex formation was obtained. It was found that, in contrast to Pd, which binds only to its redox partners, PdR and P450cam were able to form PdR/PdR and P450cam/P450cam complexes. A ternary PdR/Pd/P450cam complex was also registered. Its lifetime was sufficient to permit up to 60 turnovers to occur. The binding of Pd to P450cam and to PdR within the ternary complex occurred at distinct sites, with Pd serving as a bridge between the two proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.2001.2405 | DOI Listing |
J Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China. Electronic address:
Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFNat Commun
January 2025
Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
Cellular glycosylation is crucial for cell recognition, signal transduction, and the development of various diseases, especially in tumor initiation, progression, and metastasis. Current glycosylation profiling methods normally involve laborious sample processing and labeling and lack in-situ quantitative analysis. Here, we present a direct optical method to investigate and quantify the glycan expression on single cells based on lectin-glycan kinetic quantification with plasmonic imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!