Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial carboxylases in rats.

J Nutr

Unidad de Genética de la Nutrición of the Instituto de Investigaciones Biomédicas, UNAM and Instituto Nacional de Pediatría, México DF 04530.

Published: July 2001

Biotin is the cofactor of carboxylases [pyruvate (PC), propionyl-CoA (PCC), 3-methyl crotonyl-CoA and acetyl-CoA], to which it is covalently bound by the action of holocarboxylase synthetase (HCS). We have studied whether biotin also regulates their expression, as it does other, nonrelated enzymes (e.g., glucokinase, phosphoenol pyruvate carboxykinase, guanylate cyclase). For this purpose, HCS, PC and PCC mRNAs were studied in biotin-deficient rat liver, kidney, muscle and brain of biotin-deficient rats. PC- and PCC-specific activities and protein masses were also measured. The 24-h time course of HCS mRNA in deficient rats was examined after biotin supplementation. HCS mRNA was significantly reduced during vitamin deficiency. It increased in deficient rats after biotin was injected, reaching control levels 24 h after administration. These changes seem to be the first known instance in mammals of an effect of a water-soluble vitamin on a mRNA functionally related to it. In contrast, the decreased activities of the carboxylases were associated with reductions in the amounts of their enzyme proteins except in brain. However, their mRNA levels were not affected. There are no reports on these types of vitamin affecting the mRNA or protein levels of their apoenzymes or their products. This work provides evidence for biotin being a modulator of the genetic expression of the enzymes involved in its function as a cofactor. As such, it may be a useful model for probing a similar role for other water-soluble vitamins.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/131.7.1909DOI Listing

Publication Analysis

Top Keywords

biotin regulates
8
genetic expression
8
holocarboxylase synthetase
8
rats biotin
8
hcs mrna
8
deficient rats
8
vitamin mrna
8
biotin
6
mrna
5
regulates genetic
4

Similar Publications

SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

J Exp Clin Cancer Res

January 2025

Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.

Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.

Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!