Using cre/loxP gene targeting, transgenic mice with muscle-specific inactivation of the GLUT4 gene (muscle GLUT4 KO) were generated and shown to develop a diabetes phenotype. To determine the mechanism, we examined insulin-stimulated glucose uptake and metabolism during hyperinsulinemic-euglycemic clamp in control and muscle GLUT4 KO mice before and after development of diabetes. Insulin-stimulated whole body glucose uptake was decreased by 55% in muscle GLUT4 KO mice, an effect that could be attributed to a 92% decrease in insulin-stimulated muscle glucose uptake. Surprisingly, insulin's ability to stimulate adipose tissue glucose uptake and suppress hepatic glucose production was significantly impaired in muscle GLUT4 KO mice. To address whether these latter changes were caused by glucose toxicity, we treated muscle GLUT4 KO mice with phloridzin to prevent hyperglycemia and found that insulin-stimulated whole body and skeletal muscle glucose uptake were decreased substantially, whereas insulin-stimulated glucose uptake in adipose tissue and suppression of hepatic glucose production were normal after phloridzin treatment. In conclusion, these findings demonstrate that a primary defect in muscle glucose transport can lead to secondary defects in insulin action in adipose tissue and liver due to glucose toxicity. These secondary defects contribute to insulin resistance and to the development of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC353719 | PMC |
http://dx.doi.org/10.1172/JCI10294 | DOI Listing |
Chem Biomed Imaging
January 2025
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.
Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions.
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:
Fibroblast Growth Factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported.
View Article and Find Full Text PDFTissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.
View Article and Find Full Text PDFCurr Biol
January 2025
Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:
Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species.
View Article and Find Full Text PDFCurr Drug Metab
January 2025
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!