Recruitment and derecruitment during acute respiratory failure: an experimental study.

Am J Respir Crit Care Med

Istituto di Anestesia e Rianimazione, Università degli Studi di Milano, Ospedale Maggiore Policlinico-IRCCS, Milan, Italy.

Published: July 2001

We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost, middle, and most dependent lung regions. Each dog was studied at positive end-expiratory pressure (PEEP) of 5 and 15 cm H2O and three levels of tidal volume (VT; low, medium, and high). For each PEEP-VT combination, we obtained a computed tomographic (CT) scan at end-inspiration and end-expiration. The variations of Ppl and Pes pressures were correlated (r = 0.86 +/- 0.07, p < 0.0001), as was the vertical gradient of transpulmonary (PL) and superimposed pressure (r = 0.92, p < 0.0001). Recruitment proceeded continuously along the entire volume-pressure curve. Estimated threshold opening pressures were normally distributed (mode = 20 to 25 cm H2O). The amount of end-expiratory collapse at the same PEEP and PL was significantly lower when ventilation was performed at high VT. End-inspiratory and end-expiratory collapse were highly correlated (r = 0.86, p < 0.0001), suggesting that as more tissue is recruited at end-inspiration, more remains recruited at end-expiration. When superimposed pressure exceeded applied airway pressure (Paw), collapse significantly increased.

Download full-text PDF

Source
http://dx.doi.org/10.1164/ajrccm.164.1.2007010DOI Listing

Publication Analysis

Top Keywords

recruitment derecruitment
8
respiratory failure
8
correlated 086
8
superimposed pressure
8
end-expiratory collapse
8
derecruitment acute
4
acute respiratory
4
failure experimental
4
experimental study
4
study aimed
4

Similar Publications

This study aims to determine if Riluzole usage can change the function and excitability of motor neurons. The clinical data and indices of motor neuron excitability were assessed using high-density surface EMG parameters from 80 ALS participants. The persistent inward current was assessed using the discharge rate from paired motor units obtained from the tibialis anterior muscle.

View Article and Find Full Text PDF

Hypercapnia impacts neural drive and timing of diaphragm neuromotor control.

J Neurophysiol

December 2024

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States.

The neuromotor control of the diaphragm muscle (DIAm) involves motor unit recruitment, sustained activity (incrementing and decrementing), and motor unit derecruitment, phases that may be modified to maintain ventilation across conditions. The primary goal of the present study was to investigate the effects of hypercapnia, which increases respiratory rate and tidal volume, on DIAm neuromotor control in awake rats. We recorded DIAm electromyography (EMG) with implanted chronic fine-wire electrodes in nine Sprague-Dawley rats during normocapnia and hypercapnia (7% CO).

View Article and Find Full Text PDF

Introduction: Spinal cord stimulation (SCS) represents an established interventional pain therapeutic; however, the SCS effects of SCS waveforms on motor neuron recruitment of the lower limbs of chronic pain patients remain largely unknown.

Methods: We investigated these effects by performing isometric ankle-dorsal flexions at varying force levels under four SCS conditions: SCS Off (1 week), burst SCS (40 Hz), SCS Off (acute), and tonic SCS (130 Hz). Muscle activity was recorded via high-density surface electromyography (64-electrode grid) on the tibialis anterior muscle.

View Article and Find Full Text PDF
Article Synopsis
  • APRV (Airway Pressure Release Ventilation) may help protect against lung damage from atelectrauma by limiting the duration of expirations, preventing harmful separation of epithelial surfaces during breathing.
  • A study using a porcine model of ARDS tested different levels of inspiratory pressure and expiration timing to analyze the effects on lung mechanics and resistance post-injury.
  • Results indicated that shorter expirations reduced lung strain during inspiration, suggesting that optimal timing in APRV can enhance lung function recovery after injury.
View Article and Find Full Text PDF

. Geometrical region of interest (ROI) selection in electrical impedance tomography (EIT) monitoring may lack sensitivity to subtle changes in ventilation distribution. Therefore, we demonstrate a new physiological method for ROI definition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!