Effects of ethanol on the dorsal raphe nucleus and its projections to the caudate putamen.

Alcohol

Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Dr., Indianapolis, IN 46202-4887, USA.

Published: April 2001

The objective of this study was to examine the effects of intraperitoneal injection of ethanol on the activity of the dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) system and its projections to the rostral caudate putamen (CPu) and determine whether rapid tolerance to the effects of ethanol develops in this system. Adult, male, Wistar rats were used in these experiments. In experiment 1, a microdialysis procedure was used to determine (a) the effects of acute intraperitoneal administration of ethanol (1.75 and 2.5 g/kg) on the extracellular levels of 5-HT in the rostral CPu and (b) whether rapid tolerance develops to these effects. In experiment 2, firing rates of 5-HT neurons were determined in the DRN after intraperitoneal administration of 2.5 g/kg of ethanol. The results of the microdialysis experiments indicated that the 2.5-g/kg dose significantly (P < .005) increased the extracellular levels of 5-HT to 150%-160% of baseline. Compared with findings for rats pretreated with saline 24 h earlier, prior treatment 24 h earlier with 2.5 g/kg of ethanol had no effect on the extracellular levels of 5-HT produced by a challenge dose of 2.5 g/kg of ethanol. Contrary to the effects in the CPu, intraperitoneal administration of 2.5 g/kg of ethanol significantly (P<.005) decreased the firing rates of 5-HT neurons in the DRN to approximately 50% of control. Overall, the results suggest to us that there is a dissociation between the effects of acute administration of ethanol on 5-HT cell body neuronal activity and 5-HT synaptic activity. The higher extracellular levels of 5-HT in the CPu may be due to increased release of 5-HT from a direct or an indirect action of ethanol, a result of inhibiting 5-HT reuptake, or related to both of these mechanisms. In addition, the findings suggest to us that rapid tolerance did not develop to the effects of ethanol on the 5-HT system within the CPu.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0741-8329(01)00126-4DOI Listing

Publication Analysis

Top Keywords

g/kg ethanol
16
intraperitoneal administration
12
extracellular levels
12
levels 5-ht
12
effects ethanol
8
dorsal raphe
8
raphe nucleus
8
caudate putamen
8
rapid tolerance
8
administration g/kg
8

Similar Publications

The Role of Endogenous Beta-Endorphin and Enkephalins in the Crosstalk Between Ethanol and Morphine.

Pharmaceuticals (Basel)

January 2025

Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.

There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system to the action of exogenous opioids such as morphine.

View Article and Find Full Text PDF

Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.

View Article and Find Full Text PDF

Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure.

View Article and Find Full Text PDF

TFEB activator protects against ethanol toxicity-induced cardiac injury by restoring mitophagy and autophagic flux.

Biochim Biophys Acta Mol Basis Dis

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.

View Article and Find Full Text PDF

Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure.

Pharmacol Biochem Behav

January 2025

Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea. Electronic address:

Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!