Cyclic AMP receptor protein (CRP) plays a key role in the transcription regulation of many prokaryotic genes. Upon the binding of cyclic AMP, CRP is allosterically activated, binds to target DNA sites, and interacts with RNA polymerase. Although the protein-protein interaction between CRP and RNA polymerase is known to be important for the transcription initiation of the target genes, its structural understanding is still lacking, particularly due to the high molecular mass (approximately 120 kDa) of the protein complex. We assigned all of the (13)C-carbonyl resonances of methionine residues in CRP by using the double labeling and the enzyme digestion techniques. The result of (13)C-carbonyl NMR experiment on [(13)C'-Met]-CRP in the presence of both cyclic AMP and RNA polymerase alpha subunit showed that the two proteins interact with each other in solution in the absence of DNA via the region around the residues from Met 157 to Met 163 in CRP. The results also showed the effectiveness of the selective labeling and (13)C-carbonyl NMR spectroscopy in the specific detection of the protein-protein interaction between large molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002962DOI Listing

Publication Analysis

Top Keywords

cyclic amp
16
rna polymerase
16
protein-protein interaction
12
13c-carbonyl nmr
12
detection protein-protein
8
amp receptor
8
receptor protein
8
crp
5
cyclic
4
interaction cyclic
4

Similar Publications

Background: Acute lung injury (ALI) is a severe condition characterized by inflammation, tissue damage, and persistent activation of the cyclic GMP-AMP (cGAS)-stimulator of interferon genes (STING) pathway, which exacerbates the production of pro-inflammatory mediators and promotes the progression of ALI. Specific inhibition of this pathway has been shown to alleviate ALI symptoms. Kaempferol-3---L-(4″--p-coumaroyl)-rhamnoside (KAE), an active compound found in the flowers of Kitagawa, exhibits anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

cGAS-STING signaling pathway in lung cancer: Regulation on antitumor immunity and application in immunotherapy.

Chin Med J Pulm Crit Care Med

December 2024

Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.

The innate immune system has a primary role in defending against external threats, encompassing viruses, bacteria, and fungi, thereby playing a pivotal role in establishing robust protection. Recent investigations have shed light on its importance in the progression of tumors, with a particular emphasis on lung cancer. Among the various signaling pathways implicated in this intricate process, the cGAS-STING pathway emerges as a significant participant.

View Article and Find Full Text PDF

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Background And Purpose: Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!