The accumulation of unfolded protein in the endoplasmic reticulum (ER) attenuates protein synthesis initiation through phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at Ser51. Subsequently, transcription of genes encoding adaptive functions including the glucose-regulated proteins is induced. We show that eIF2alpha phosphorylation is required for translation attenuation, transcriptional induction, and survival in response to ER stress. Mice with a homozygous mutation at the eIF2alpha phosphorylation site (Ser51Ala) died within 18 hr after birth due to hypoglycemia associated with defective gluconeogenesis. In addition, homozygous mutant embryos and neonates displayed a deficiency in pancreatic beta cells. The results demonstrate that regulation of translation through eIF2alpha phosphorylation is essential for the ER stress response and in vivo glucose homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1097-2765(01)00265-9DOI Listing

Publication Analysis

Top Keywords

eif2alpha phosphorylation
12
unfolded protein
8
response vivo
8
vivo glucose
8
glucose homeostasis
8
translational control
4
control required
4
required unfolded
4
protein response
4
homeostasis accumulation
4

Similar Publications

Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52.

View Article and Find Full Text PDF

Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.

View Article and Find Full Text PDF

eIF2α phosphorylation-ATF4 axis-mediated transcriptional reprogramming mitigates mitochondrial impairment during ER stress.

Mol Cells

January 2025

Basic-Clinical Convergence Research Center, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea. Electronic address:

Eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, which regulates all 3 unfolded protein response pathways, helps maintain cellular homeostasis and overcome endoplasmic reticulum (ER) stress through transcriptional and translational reprogramming. However, transcriptional regulation of mitochondrial homeostasis by eIF2α phosphorylation during ER stress is not fully understood. Here, we report that the eIF2α phosphorylation-activating transcription factor 4 (ATF4) axis is required for the expression of multiple transcription factors, including nuclear factor erythroid 2-related factor 2 and its target genes responsible for mitochondrial homeostasis during ER stress.

View Article and Find Full Text PDF

Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection.

Vet Microbiol

February 2025

National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Article Synopsis
  • PRV inhibits the unfolded protein response (UPR), a vital part of the host's immune defense, to boost its own replication during late infection phases.
  • Despite activation of certain UPR sensors like PERK and IRE1α, crucial downstream events are suppressed, which hampers the host’s ability to fight off the virus.
  • The study reveals that the Golgi apparatus is damaged in PRV-infected cells, and interference with UPR pathways enhances viral replication, highlighting how PRV manipulates cellular defenses for its advantage.
View Article and Find Full Text PDF

Repressing cytokine storm-like response in macrophages by targeting the eIF2α-integrated stress response pathway.

Int Immunopharmacol

January 2025

Department of Geriatric Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China. Electronic address:

Cytokine storm is a life-threatening systemic hyper-inflammatory state caused by different etiologies, in which the bulk production of pro-inflammatory cytokines from activated macrophages has a central role. Integrated stress response (ISR) comprises several protective signaling pathways, leading to phosphorylation of eukaryotic initiation factor 2α (eIF2α) and repression of protein translation. Emerging evidence suggests that ISR induction may elicit anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!