Xanthomonas campestris Ohr (a protein involved in organic peroxide protection) and Escherichia coli OsmC (an osmotically inducible protein of unknown function) are related proteins. Database searches and phylogenetic analyses reveal that Ohr and OsmC homologues cluster into two related subfamilies of proteins widely distributed in both Gram-negative and Gram-positive bacteria. To determine if these two subfamilies are functionally distinct, ohr and osmC in Pseudomonas aeruginosa (a bacterium with one representative from each subfamily) were analysed. Only ohr mutants are hypersensitive to organic peroxide, and this phenotype can be restored by complementation with ohr but not osmC. In addition, expression of ohr was highly induced only by organic peroxides, and not by other oxidants or stresses. In contrast, osmC was induced by ethanol and osmotic stress. A similar pattern of regulation was observed for Ohr and OsmC homologues in the Gram-positive bacterium Deinococcus radiodurans, though uninduced expression was much higher and induction lower in this species. These data clearly support the conclusion that Ohr and OsmC define two functionally distinct subfamilies with distinct patterns of regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-147-7-1775 | DOI Listing |
Free Radic Biol Med
May 2022
Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil. Electronic address:
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2019
College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
Bacterial antioxidants play a vital role in the detoxification of exogenous peroxides. Several antioxidant defenses including low-molecular-weight thiols (LMWTs) and protective enzymes were developed to help the bacterium withstand the adverse stress. Although osmotically induced bacterial protein C (OsmC), classified as the organic hydroperoxide reductase (Ohr)/OsmC superfamily, has been demonstrated in some mycobacterial species, including M.
View Article and Find Full Text PDFBMC Microbiol
October 2017
Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark.
Background: Microbial degradation of phenoxy acid (PA) herbicides in agricultural soils is important to minimize herbicide leaching to groundwater reservoirs. Degradation may, however, be hampered by exposure of the degrader bacteria to toxic metals as copper (Cu) in the soil environment. Exposure to Cu leads to accumulation of intracellular reactive oxygen species (ROS) in some bacteria, but it is not known how Cu-derived ROS and an ensuing oxidative stress affect the degradation of PA herbicides.
View Article and Find Full Text PDFRedox Biol
August 2017
Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil. Electronic address:
Ohr and OsmC proteins comprise two subfamilies within a large group of proteins that display Cys-based, thiol dependent peroxidase activity. These proteins were previously thought to be restricted to prokaryotes, but we show here, using iterated sequence searches, that Ohr/OsmC homologs are also present in 217 species of eukaryotes with a massive presence in Fungi (186 species). Many of these eukaryotic Ohr proteins possess an N-terminal extension that is predicted to target them to mitochondria.
View Article and Find Full Text PDFMol Biochem Parasitol
July 2017
Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic. Electronic address:
Osmotically inducible protein (OsmC) and organic hydroperoxide resistance protein (Ohr) are small, thiol-dependent peroxidases that comprise a family of prokaryotic protective proteins central to the defense against deleterious effects of organic hydroperoxides, which are reactive molecules that are formed during interactions between the host immune system and pathogens. Trichomonas vaginalis, a sexually transmitted parasite of humans, possesses OsmC homologues in its hydrogenosomes, anaerobic mitochondrial organelles that harbor enzymes and pathways that are sensitive to oxidative damage. The glycine decarboxylase complex (GDC), which consists of four proteins (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!