An in situ hybridization method was applied to the identification of marine cyanobacteria assignable to the genus Prochlorococcus using horseradish-peroxidase-labelled 16S rRNA-targeted oligonucleotide probes in combination with tyramide signal amplification (TSA). With this method very bright signals were obtained, in contrast to hybridizations with oligonucleotides monolabelled with fluorochromes, which failed to give positive signals. Genotype-specific oligonucleotides for high light (HL)- and low light (LL)-adapted members of this genus were identified by 16S rRNA sequence analyses and their specificities confirmed in whole-cell hybridizations with cultured strains of Prochlorococcus marinus Chisholm et al., 1992, Prochlorococcus sp. and Synechococcus sp. In situ hybridization of these genotype-specific probes to field samples from stratified water bodies collected in the North Atlantic Ocean and the Red Sea allowed a rapid assessment of the abundance and spatial distribution of HL- and LL-adapted Prochlorococcus. In both oceanic regions the LL-adapted Prochlorococcus populations were localized in deeper water whereas the HL-adapted Prochlorococcus populations were not only distinct in each region but also exhibited strikingly different depth distributions, HLI being confined to shallow water in the North Atlantic, in contrast to HLII, which was present throughout the water column in the Red Sea.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-147-7-1731DOI Listing

Publication Analysis

Top Keywords

situ hybridization
12
depth distributions
8
oceanic regions
8
16s rrna-targeted
8
north atlantic
8
red sea
8
ll-adapted prochlorococcus
8
prochlorococcus populations
8
prochlorococcus
6
closely prochlorococcus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!