The genes encoding keratin 5 and 14 are highly expressed in the basal cell layer keratinocytes of the epidermis, but both genes are silenced when keratinocytes move into the suprabasal compartment. The POU homeodomain factors Skn-1a and Tst-1, which are expressed in epidermis, may play a role in the suprabasal repression of the keratin 5 and 14 genes because keratin 14 mRNA expression persists in suprabasal cells in Skn-1/Tst-1 double knockout mice. In transfection experiments, both Skn-1a and Tst-1 repress the keratin 14 promoter, with the POU domain being sufficient for repression. The region of the keratin 14 gene sufficient and required for repression by Skn-1a is a 100-base pair sequence lacking POU-binding sites adjacent to the transcription start site. DNA-binding defective mutants of Skn-1a and Tst-1 are as effective at mediating repression as the wild type proteins, suggesting that protein-protein interactions rather than direct DNA binding are important for repression. We also show that CREB-binding protein (CBP)/p300 co-activators are strong activators of keratin 14 gene expression, acting through sequences close to the keratin 14 promoter. Further, CBP interacts directly with the POU domain of Skn-1a, and increasing concentrations of CBP can overcome Skn-1a-mediated repression, suggesting that POU domain factors may repress keratin 14 gene expression by interfering with the activity of co-activators such as CBP/p300.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M103000200DOI Listing

Publication Analysis

Top Keywords

pou domain
16
keratin promoter
12
skn-1a tst-1
12
keratin gene
12
keratin
9
dna binding
8
repress keratin
8
gene expression
8
skn-1a
6
repression
6

Similar Publications

Potential Candidate Genes Associated with Litter Size in Goats: A Review.

Animals (Basel)

January 2025

School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.

Article Synopsis
  • This review focuses on genetic markers that influence litter size in goats, a critical trait for enhancing productivity in small ruminant farming.
  • Goats are important for economic stability across various regions, but their reproductive efficiency is often low, impacting farm profitability.
  • Recent genetic research has identified several key genes connected to reproductive traits, which could help improve selective breeding programs and boost productivity by increasing litter sizes.
View Article and Find Full Text PDF

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively.

View Article and Find Full Text PDF

NONO-related X-linked intellectual disability syndrome: Further clinical and molecular delineation.

Eur J Med Genet

December 2024

CHU Lille, Institut de Génétique Médicale, F-59000 Lille, France; Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France. Electronic address:

The X-linked NONO gene encodes Non-Pou Domain-Containing Octamer-Binding Protein, a multifunctional member of the DBHS family involved in transcriptional regulation, RNA splicing and DNA repair. Pathogenic variants in NONO cause Intellectual Developmental Disorder, X-linked Syndromic (MIM #300967), characterised by intellectual disability, neurodevelopmental delay, cardiomyopathy, such as left ventricular non-compaction (LVNC), and congenital heart defects such as including atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), and patent foramen ovale (PFO). This study reports three new patients with pathogenic hemizygous frameshift variants in NONO identified with exome sequencing, broadening the clinical presentation.

View Article and Find Full Text PDF

Structural plasticity of the coiled-coil interactions in human SFPQ.

Nucleic Acids Res

December 2024

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!