The effect of infrared low-intensity laser irradiation on functional activity of blood polymorphonuclear leukocytes was studied in vitro. A dose-dependent priming of polymorphonuclear leukocytes induced by infrared low-intensity laser irradiation was demonstrated. Similar effects were also observed in the presence of the photosensitizer photosense.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1017643230376DOI Listing

Publication Analysis

Top Keywords

infrared low-intensity
8
low-intensity laser
8
laser irradiation
8
polymorphonuclear leukocytes
8
mechanism therapeutic
4
therapeutic low-intensity
4
low-intensity infrared
4
infrared laser
4
laser radiation
4
radiation infrared
4

Similar Publications

Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is a non-invasive neuromodulation technique for the brain. Low-intensity near-infrared light (1-500 mw) has demonstrated the ability to improve memory in Alzheimer's disease (AD) model mice, suggesting its potential for AD treatment. However, the impact of PBM on neural oscillations in the hippocampal region affected by AD remains unknown.

View Article and Find Full Text PDF

Alginate-based functionalized, remote, light-responsive hydrogel transducer for synergistic mild photo thermoelectric stimulation for tumor therapy.

Int J Biol Macromol

December 2024

School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China. Electronic address:

Photothermal therapy (PTT) is an effective cancer treatment that circumvents the resistance caused by chemotherapy drugs. Conventional PTT has a relatively high temperature, which is better able to kill tumor tissues, but it is also more damaging to normal tissues. Mild PTT avoids these high temperatures, but its corresponding killing ability becomes lower and enhances the heat resistance of cancer cells, causing tumor self-protection and reducing the therapeutic effect of PTT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!