B cell chronic lymphocytic leukaemia (B-CLL) is characterised by defective apoptosis that cannot be explained solely on the basis of the known chromosomal abnormalities. We and other have now reported that the leukemic cells spontaneously display the inducible isoform of nitric oxide synthase, iNOS. Inhibition of the iNOS pathway leads to increased apoptosis of the tumoral cells in vitro, indicating that the endogenous release of NO contributes to their resistance to the normal apoptotic process. The factors that induce the expression of iNOS in vivo in the leukemic cells are not yet identified. Yet, as interaction of B-CLL leukemic cells with bone marrow stromal cells promotes their survival, the involvement of adhesion molecules and integrins may be suspected. The engagement of CD23 stimulates iNOS activation in the tumoral cells, suggesting that in vivo interaction of CD23 with one of its recognised ligands may contribute to iNOS induction. A role for CD40-CD40 ligand interaction may also be hypothesised. The mechanisms involved in the anti-apoptotic role of NO are not fully understood, but may implicate the inhibition of caspase activity, hence the impairment of the Fas pathway. In addition, the mitochondrial membrane potential disruption appears to be a NO-sensitive step in the apoptosis cascade. The presence of a NOS displaying anti-apoptotic properties has now been recognised in different cell types, including various leukaemia. A better knowledge of the mechanisms governing the ultimate fate of NO, anti- versus pro-apoptotic would allow the development of new therapeutic approaches for the treatment of these diseases.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10428190109057923DOI Listing

Publication Analysis

Top Keywords

leukemic cells
12
nitric oxide
8
apoptotic process
8
cell chronic
8
chronic lymphocytic
8
lymphocytic leukaemia
8
tumoral cells
8
cells
6
inos
5
contribution nitric
4

Similar Publications

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation ( < 0.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) is a haematologic malignancy with high relapse rates in both adults and children. Leukaemic stem cells (LSCs) are central to leukaemopoiesis, treatment response and relapse and frequently associated with measurable residual disease (MRD). However, the dynamics of LSCs within the AML microenvironment is not fully understood.

View Article and Find Full Text PDF

A 31-year-old male with a plasmacytoid dendritic blast cell neoplasm.

Ecancermedicalscience

November 2024

Internal Medicine Service, Sanatorio Sagrado Corazón, Buenos Aires, CP 1039, Argentina.

Plasmacytoid blast dendritic cell neoplasm is a rare subtype of acute leukaemia that represents less than 1% of haematologic neoplasms. It is characterised by skin involvement and leukaemic dissemination in the rest of the body. The immunophenotype is represented by the expression of CD4, CD56 and CD123.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!