Recombinant adeno-associated virus type 2 (rAAV) is a promising vector for in vivo gene therapy. Transduction by rAAV requires binding to heparan sulfate proteoglycan on the cell surface, and heparin can block this binding. Because heparin is administered to most patients undergoing cardiovascular gene transfer in order to prevent thrombotic events, it is important to identify anticoagulants which do not interfere with rAAV transduction. Therefore, we examined the influence of different anticoagulants on rAAV transduction in vitro. rAAV transduction was inhibited by 40.5 +/- 7.9% at heparin concentrations of 0.1 U/ml, and by 81.7 +/- 3.6% at 1.0 U/ml. The low molecular weight (LMW) heparin tinzaparin inhibited rAAV transduction by 20.2 +/- 3.8% at 0.1 U/ml and 37.1 +/- 1.8% at 1.0 U/ml. The inhibitory effect was significantly weaker compared with heparin at 1.0 U/ml, (P < 0.01). The LMW heparinoid danaparoid inhibited rAAV transduction by 8.8 +/- 3.5% at 0.1 U/ml (P < 0.01 compared with heparin). In contrast, recombinant hirudin did not interfere at all with rAAV transduction. In summary, the results demonstrate that inhibition of rAAV transduction by heparin occurs rapidly and at therapeutically used concentrations. LMW heparinoids and above all recombinant hirudin might be alternatives for heparin when vascular gene transfer with rAAV requires transient anticoagulation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3301466DOI Listing

Publication Analysis

Top Keywords

raav transduction
28
low molecular
12
molecular weight
12
recombinant hirudin
12
raav
10
heparin
9
transduction
9
heparin low
8
recombinant adeno-associated
8
adeno-associated virus
8

Similar Publications

Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease.

Hum Mol Genet

January 2025

Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.

View Article and Find Full Text PDF

Genome engineering with Cas9 and AAV repair templates, successes and pitfalls.

Mamm Genome

January 2025

CNRS, INSERM, CELPHEDIA, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, PHENOMIN, France.

Genome editing, in particular the CRISPR/Cas9 system, is widely used to generate new animal models. However, the generation of mutations, such as conditional knock-out or knock-in, can remain complex and inefficient, in particular because of the difficulty to deliver the donor DNA (single or double stranded) into the nucleus of fertilized oocytes. The use of recombinant adeno-associated viruses (rAAV) as donor DNA is a rapidly developing approach that promises to improve the efficiency of creation of animal models.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Research Status and Applications of Adeno-Associated Virus.

Chembiochem

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Affiliated Hospital of Hunan university, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China.

Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.

View Article and Find Full Text PDF

Genome or prime editing has become a promising tool for the treatment of hereditary disorders affecting the inner retina, such as dominant optic neuropathies. In vivo delivery of gene editors, such as Cas9, is typically achieved using recombinant adeno-associated virus (rAAV) vectors, which have a broad range of cellular tropisms and are well tolerated following intravitreal administration. Owing to the large size of gene editing constructs and the limited carrying capacity of rAAV (<5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!