Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/11.5.423 | DOI Listing |
Front Neurol
January 2022
Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.
Background: Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury.
Methods: Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo).
Biochem Biophys Res Commun
January 2022
Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
Cholinergic anti-inflammatory pathway (CAP) describes a neuronal-inflammatory reflex centered on systemic cytokine regulation by α7 nicotinic acetylcholine receptor (α7nAChR) activation of spleen-residue macrophage. However, the CAP mechanism attenuating distal tissue inflammation, inducing a low level of systemic inflammation, is lesser known. In this study, we hypothesized that CAP regulates monocyte accessibility by influencing their adhesion to endothelial cells.
View Article and Find Full Text PDFJ Biol Chem
June 2015
From the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, the Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan, and
Sialyl Lewis X (sLe(x)) antigen functions as a common carbohydrate determinant recognized by all three members of the selectin family. However, its expression and function in mice remain undefined due to the poor reactivity of conventional anti-sLe(x) monoclonal antibodies (mAbs) with mouse tissues. Here, we developed novel anti-sLe(x) mAbs, termed F1 and F2, which react well with both human and mouse sLe(x), by immunizing fucosyltransferase (FucT)-IV and FucT-VII doubly deficient mice with 6-sulfo-sLe(x)-expressing cells transiently transfected with an expression vector encoding CMP-N-acetylneuraminic acid hydroxylase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
Division of Nephrology, Department of Medicine,Division of Organ Transplantation, Department of Surgery, and
Selectin-selectin ligand interactions mediate the initial steps in leukocyte migration, an integral part of immune responses. Fucosyltransferase-VII (FucT-VII), encoded by Fut7, is essential for biosynthesis of selectin ligands. In an established model of cardiac allograft vasculopathy and chronic rejection, Fut7(-/-) recipients exhibited long-term graft survival with minimal vasculopathy compared with WT controls.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2014
College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China. Electronic address:
Sialyl Lewis X (sLe X, CD15s) is a key antigen produced on tumor cell surfaces during multidrug resistance (MDR) development. The present study investigated the effect of α1, 3 fucosyltransferase VII (FucT VII) and α2, 3 sialyltransferase IV (ST3Gal IV) on sLe X oligosaccharides synthesis as well as their impact on MDR development in acute myeloid leukemia cells (AML). FUT7 and ST3GAL4 were overexpressed in three AML MDR cells and bone marrow mononuclear cells (BMMC) of AML patients with MDR by real-time polymerase chain reaction (PCR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!