A subpopulation of low-density lipoproteins (LDL) is present in human plasma that contains lipid hydroperoxides and is more negatively charged (LDL(-)) than normal native LDL. By circular dichroism and tryptophan lifetime measurements we found that apoB-100 secondary structure is markedly decreased and its conformation is severely altered in LDL(-). The low tryptophan fluorescence intensity confirms the oxidative degradation of the lipoprotein, and the very long lifetime value of one of its decay components indicates a low polarity environment for the remaining unbleached residues. Either a peculiar folding or, most likely, a sinking of the apoB-100 into the lipid core can account for the observed long lifetime component. Oxidation in vitro produces a similar unfolding of the apolipoprotein but the lifetime of tryptophan fluorescence is shifted to lower values, indicating that the denatured apoprotein remains at the hydrophilic surface of the lipoprotein particle. A disordering and an increased polarity of the LDL(-) surface lipids was demonstrated by measuring the generalized polarization of 2-dimethylamino-6-lauroylnaphthalene (Laurdan). The looser monolayer packing apparently favors the new conformation of apoB-100 and its sinking into a more hydrophobic environment, possibly accounting for it reduced receptor binding properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(01)00555-xDOI Listing

Publication Analysis

Top Keywords

apob-100 secondary
8
secondary structure
8
tryptophan fluorescence
8
long lifetime
8
loss apob-100
4
structure conformation
4
conformation hydroperoxide
4
hydroperoxide rich
4
rich electronegative
4
ldl-
4

Similar Publications

Computational analysis of the alpha-2 domain of apolipoprotein B - 100, a potential triggering factor in LDL aggregation.

Biochim Biophys Acta Gen Subj

February 2025

Department of Chemistry, York College of the City University of New York, Jamaica, New York 11451, USA; PhD Programs in Chemistry and Biochemistry, Graduate Center of the City University of New York, New York 10016, USA. Electronic address:

Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins.

View Article and Find Full Text PDF

Aims/hypothesis: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk.

Methods: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex.

View Article and Find Full Text PDF

Despite treatment with statins, patients with elevated low-density lipoprotein cholesterol (LDL-C) and triglycerides remain at increased risk for adverse cardiovascular events. Consequently, novel pharmaceutical drugs have been developed to control and modify the composition of blood lipids to ultimately prevent fatal cardiovascular events in patients with dyslipidaemia. This article reviews established and emerging lipid-lowering drugs regarding their mechanism of action, development stage, ongoing clinical trials, side effects, effect on blood lipids and reduction in cardiovascular morbidity and mortality.

View Article and Find Full Text PDF

Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors (PCSK9i): Current Evidence for Expanding the Paradigm?

J Cardiovasc Pharmacol Ther

July 2023

Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.

Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are low-density lipoprotein cholesterol (LDL-C)-lowering drugs that play a critical role in lipoprotein clearance and metabolism. PCSK9i are used in patients with familial hypercholesterolemia and for the secondary prevention of acute cardiovascular events in patients with atherosclerotic cardiovascular disease (CVD). We focused on the literature from 2015, the year of approval of the PCSK9 monoclonal antibodies, to the present on the use of PCSK9i not only in the lipid field but also by evaluating their effects on metabolic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!