This article presents an approximate solution for weak nonlinear standing waves in the interior of an exponential acoustic horn. An analytical approach is chosen assuming one-dimensional plane-wave propagation in a lossless fluid within an exponential horn. The model developed for the propagation of finite-amplitude waves includes linear reflections at the throat and at the mouth of the horn, and neglects boundary layer effects. Starting from the one-dimensional continuity and momentum equations and an isentropic pressure-density relation in Eulerian coordinates, a perturbation analysis is used to obtain a hierarchy of wave equations with nonlinear source terms. Green's theorem is used to obtain a formal solution of the inhomogeneous equation which takes into account linear reflections at the ends of the horn, and the solution is applied to the nonlinear horn problem to yield the acoustic pressure for each order, first in the frequency and then in the time domain. In order to validate the model, an experimental setup for measuring fundamental and second harmonic pressures inside the horn has been developed. For an imposed throat fundamental level, good agreement is obtained between predicted and measured levels (fundamental and second harmonic) at the mouth of the horn.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.1362688DOI Listing

Publication Analysis

Top Keywords

weak nonlinear
8
horn
8
exponential horn
8
linear reflections
8
mouth horn
8
fundamental second
8
second harmonic
8
nonlinear propagation
4
propagation sound
4
sound finite
4

Similar Publications

Survival parametric modeling for patients with heart failure based on Kernel learning.

BMC Med Res Methodol

January 2025

Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models.

View Article and Find Full Text PDF

Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise.

Int J Biol Macromol

January 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:

Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.

View Article and Find Full Text PDF

Climate change could amplify weak synchrony in large marine ecosystems.

Proc Natl Acad Sci U S A

January 2025

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.

Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.

View Article and Find Full Text PDF

Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.

View Article and Find Full Text PDF

High-impedance microwave resonators with two-photon nonlinear effects.

Nat Commun

January 2025

NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.

Nonlinear effects play a central role in photonics as they form the foundation for most of the device functionalities such as amplification and quantum state preparation and detection. Typically the nonlinear effects are weak and emerge only at high photon numbers with strong drive. Here we present an experimental study of a Josephson junction -based high-impedance resonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!