Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.55 | DOI Listing |
Science
January 2025
Department of Geoinformatics, University of Kashmir, Srinagar, India.
On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.
View Article and Find Full Text PDFJ Water Health
January 2025
Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada; Schulich School of Engineering, University of Calgary, 622 Collegiate Pl NW, Calgary, Alberta T2N 4V8, Canada.
Risk of waterborne diseases (WBDs) persists in temperate regions. The extent of influence of climate-related factors on the risk of specific WBDs in a changing climate and the projections of future climate scenarios on WBDs in temperate regions are unclear. A systematic review was conducted to identify specific waterborne pathogens and diseases prevalent in temperate region literature and transmission cycle associations with a changing climate.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
School of Biological Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia 5005, Australia.
In mammalian vertebral columns, locomotive ability is expected to be an evolutionary driver of variation in the number of vertebrae; in species evolved to run fast or have a flexible vertebral column, they generally have limited numerical variation and low occurrence of malformed vertebrae to maintain their running performance. Although this hypothesis is supported among species sharing similar locomotive constraints (e.g.
View Article and Find Full Text PDFBiosystems
January 2025
ICube Laboratory, UMR 7357, Department of Mechanics, Civil Engineering and Energetics Team - GCE, CNRS, University of Strasbourg, INSA Strasbourg, Department of Architecture, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France; MAP-Aria Laboratory, UMR CNRS/MCC 3495, École Nationale Supérieure d'Architecture de Lyon, 3 rue Maurice Audin, BP 170, 69512 Vaulx-en-Velin Cedex, France. Electronic address:
This paper explores the intersections of constructal thermodynamics, and its semantic ontology within the context of autopoetic, digital and computational design in protocell inspired numerical architectural and urban narratives that are examined here as open systems. Constructal law is the thermodynamic theory based on the analysis of fluxes across the border of an open system. Protocells, as dynamic and adaptive open finite size systems, serve in this paper as a compelling metaphor and design model for responsive and sustainable manmade architectural and urban environments.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address:
This study is the first to use synthetic biological omics technology to analyze the molecular mechanism underlying deep degradation of TNT, to construct an artificial transformation system to create engineered Escherichia coli bacteria, and to use Bacillus subtilis as an expression host to explore the mechanism driving the reshaping of the deep degradation platform on microecology. Nitroreductase family protein, 2-oxoacid:acceptor oxidoreductase, NADPH-cytochrome P450 reductase, monooxygenase, ring-cleaving dioxygenase, and RraA family protein significantly participated in the reduction-hydroxylation-ring opening cleavage of TNT, achieving deep transformation of TNT to produce pyruvic acid and other products that entered the cellular metabolic cycle. The key toxic metabolic pathways of TNT, 2,4-diamino-6-nitrotoluene, 2,4,6-triaminotoluene, and 2,4,6-trihydroxytoluene are pantothenate and CoA biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!