Tryptanthrin, a bioactive ingredient of Polygonum tinctorium Lour., is a member of the Indigo plant family and has potent cytocidal effects on various human leukemia cells in vitro. At low concentrations, tryptanthrin enhanced the expression of cell differentiation (CD) markers in human monocytic (U-937) and promyelocytic (HL-60) leukemia cells indicative of differentiation to monocytes/macrophages. Furthermore, nitroblue tetrazolium (NBT) reductive and alpha-naphthyl butyrate esterase (NBE) activities were markedly increased after treatment. Tryptanthrin was more potent than dimethyl sulfoxide (DMSO) at inducing U-937 cell differentiation into monocytes/macrophages. After treatment with higher concentrations of tryptanthrin for 24 h, cytoplasmic vacuolation and destruction of mitochondria were observed. The leukemia cells died via apoptosis 48 h after treatment. Cytoplasmic vacuolation and apoptotic changes correlated with the dysfunction of mitochondria. Electron microscopic observations revealed marked swelling and destruction of mitochondria after exposure of the leukemia cells to tryptanthrin. Exposure to tryptanthrin enhanced Fas-induced apoptosis and increased caspase-3 activity before induction of apoptosis. These results show that low concentrations of tryptanthrin can induce differentiation of leukemia cells but higher concentrations will kill leukemia cells through apoptosis, possibly through a caspase-3/Fas antigen pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1827.2001.01204.xDOI Listing

Publication Analysis

Top Keywords

leukemia cells
28
cell differentiation
12
concentrations tryptanthrin
12
tryptanthrin
8
ingredient polygonum
8
polygonum tinctorium
8
tinctorium lour
8
low concentrations
8
tryptanthrin enhanced
8
differentiation monocytes/macrophages
8

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.

View Article and Find Full Text PDF

Multiple myeloma is a disease related to the proliferation of malignant plasma cells; in most patients, the disease is confined to the level of bone marrow. However, in a minority of patients, the malignant plasma cells are also localized outside the bone marrow, either at the level of peripheral blood (plasma cell leukemia) or at the level of soft tissues (extramedullary multiple myeloma). These two rare forms of aggressive MM (ultrahigh-risk (uHR) MM as MM leading to death within 24-36 months) are both associated with some molecular features and with a limited response to current treatments.

View Article and Find Full Text PDF

Background: Givinostat, a potent histone deacetylase (HDAC) inhibitor, is promising for the treatment of relapsed leukemia and myeloma.

Purpose: This study aimed to develop and verify a quick assay for the measurement of givinostat concentration using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) with eliglustat as the internal standard (IS), establishing a basic pharmacokinetic profile for its pre-clinical application and metabolic stability in vitro.

Methods: Sample preparation was performed via protein precipitation using acetonitrile.

View Article and Find Full Text PDF

Background: High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.

Objectives: This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) combining monoclonal antibodies with cytotoxic payloads are a rapidly emerging class of immune-based therapeutics with the potential to improve the treatment of cancer, including children with relapse/refractory acute lymphoblastic leukemia (ALL). CD123, the α subunit of the interleukin-3 receptor, is overexpressed in ALL and is a potential therapeutic target. Here, we show that pivekimab sunirine (PVEK), a recently developed ADC comprising the CD123-targeting antibody, G4723A, and the cytotoxic payload, DGN549, was highly effective in vivo against a large panel of pediatric ALL patient-derived xenograft (PDX) models ( = 39).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!