Oxygen consumption and resting energy expenditure during phototherapy in full term and preterm newborn infants.

Arch Dis Child Fetal Neonatal Ed

Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.

Published: July 2001

Objectives: To determine the effect of phototherapy on the oxygen consumption and resting energy expenditure of term and preterm newborn infants.

Methods: A total of 202 infants (gestation 30-42 weeks; body weight 1270-4100 g) requiring phototherapy for the treatment of neonatal hyperbilirubinaemia were enrolled in a randomised crossover study. In random sequence, the oxygen consumption and resting energy expenditure were measured twice in each infant by indirect calorimetry, once at the end of six hours of continuous phototherapy and once after a control period of at least six hours without phototherapy. Anterior abdominal wall temperature was servocontrolled at 36.5 degrees C throughout the study.

Results: At the end of six hours of continuous phototherapy, oxygen consumption (mean (SD): 6.21 (1.35) v 6.26 (1.51) ml/kg, p = 0.555) and resting energy expenditure (178.11 (37.62) v 180.37 (43.14) kJ/kg/24 h, p = 0.382) did not differ significantly from those measured after the control period. There were also no significant differences in heart rate, respiratory rate, or rectal temperature. Subgroup analysis of those of gestation < 37 weeks or < 34 weeks also showed no effect of phototherapy on either oxygen consumption or resting energy expenditure.

Conclusion: Phototherapy has no effect on the metabolic rate of thermally stable term or preterm infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1721262PMC
http://dx.doi.org/10.1136/fn.85.1.f49DOI Listing

Publication Analysis

Top Keywords

oxygen consumption
20
resting energy
20
consumption resting
16
energy expenditure
16
term preterm
12
phototherapy oxygen
12
phototherapy
8
preterm newborn
8
hours continuous
8
continuous phototherapy
8

Similar Publications

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Introduction: Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level.

Materials And Methods: In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy.

View Article and Find Full Text PDF

Unlabelled: The prevalence of obesity is increasing at an alarming rate in industrialized countries. Obesity is a systemic disease that causes not only macroscopic alterations, but also mitochondrial dysfunction. Laparoscopic sleeve gastrectomy (LSG) poses a potential therapeutic option for patients with severe obesity.

View Article and Find Full Text PDF

Heavy metals (HMs) may cause the generation of reactive oxygen species (ROS), which results in oxidative stress and eventually leads to an increase in cardiovascular diseases (CVD). The Hoveyzeh Cohort Study Center provided clinical data for cardiovascular cases. The collection of samples was done randomly.

View Article and Find Full Text PDF

Boosting selective chlorine evolution reaction: Impact of Ag doping in RuO electrocatalysts.

J Colloid Interface Sci

January 2025

School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China. Electronic address:

The chlor-alkali process is critical to the modern chemical industry because of the wide utilization of chlorine gas (Cl). More than 95 % of global Cl production relies on electrocatalytic chlorine evolution reaction (CER) through chlor-alkali electrolysis. The RuO electrocatalyst serves as the main active component widely used in commercial applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!