We observe and analyze strongly nonlinear photoluminescence kinetics of indirect excitons in GaAs/AlGaAs coupled quantum wells at low bath temperatures, > or = 50 mK. The long recombination lifetime of indirect excitons promotes accumulation of these Bose particles in the lowest energy states and allows the photoexcited excitons to cool down to temperatures where the dilute 2D gas of indirect excitons becomes statistically degenerate. Our main result--a strong enhancement of the exciton scattering rate to the low-energy states with increasing concentration of the indirect excitons--reveals bosonic stimulation of exciton scattering, which is a signature of a degenerate Bose-gas of excitons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.86.5608DOI Listing

Publication Analysis

Top Keywords

indirect excitons
16
coupled quantum
8
quantum wells
8
signature degenerate
8
degenerate bose-gas
8
bose-gas excitons
8
exciton scattering
8
excitons
7
indirect
5
stimulated scattering
4

Similar Publications

Luminescence of the CsZrCl under High Pressure.

Inorg Chem

January 2025

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.

The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (TMDs) with strong exciton effects have enabled diverse light emitting devices, however, their Ångstrom thickness makes it challenging to efficiently manipulate exciton emission by themselves. Although their nanostructured multi-layer counterparts can effectively manipulate optical field at deep subwavelength thickness scale, these indirect band gap multi-layer TMDs are lack of strong luminescence, hindering their applications in light emitting devices. Here, the integration of monolayer TMDs is presented with nanostructured multi-layer TMDs, combining both strong exciton emission and optical manipulation in a single ultra-thin platform.

View Article and Find Full Text PDF

Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals.

J Phys Chem Lett

December 2024

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.

View Article and Find Full Text PDF

Enhancing the optoelectronic properties of SnS mixed-phase heterostructure engineering.

Nanoscale

December 2024

Optoelectronics and Photonics Laboratory, Department of Physics, Tezpur University, Napaam 784028, Assam, India.

SnS holds great promise in optoelectronics, especially in photovoltaic devices, due to its exceptional intrinsic electronic properties and optimal optical absorption. However, its prospective applications are often limited by structural instability or oxidation, leading to internal or external defect states. This study proposes a mixed-phase SnS/h-BN heterostructure to enhance chemical and thermal stability while preserving the intrinsic optoelectronic properties of SnS.

View Article and Find Full Text PDF

We have investigated the Raman spectrum and excitonic effects of the novel 2D TaNiTe structure. The monolayer is an indirect band gap semiconductor with an electronic band gap value of 0.09 and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!