Transport of a decay chain in homogenous porous media: analytical solutions.

J Contam Hydrol

Institute of Hydromechanics and Water Resources Management (IHW), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.

Published: June 2001

With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0169-7722(00)00195-9DOI Listing

Publication Analysis

Top Keywords

transport decay
8
decay chain
8
chain homogenous
8
homogenous porous
8
porous media
8
analytical solutions
8
steady-state flow
8
solutions
5
analytical
4
media analytical
4

Similar Publications

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Inducing resistance of postharvest fruits and vegetables through acibenzolar-S-methyl application: A review of implications and mechanisms.

Plant Physiol Biochem

January 2025

College of Food Science and Engineering, Bohai University, 121013, Jinzhou, PR China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, PR China. Electronic address:

Significant losses of vegetables and fruits occur at multiple stages, including harvest, sorting, storage, and transportation, primarily due to mechanical damage, pathogen invasion, and the natural process of senescence. To mitigate postharvest decay and maintain superior quality of produce, conventional techniques such as low temperature storage and synthetic fungicide treatment are widely employed. Acibenzolar-S-methyl (ASM), an effective plant resistance inducers, has demonstrated its efficacy in protecting against a diverse range of fungal and bacterial pathogens.

View Article and Find Full Text PDF

Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Polymers (Basel)

January 2025

Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.

Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.

View Article and Find Full Text PDF

The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.

View Article and Find Full Text PDF

2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries.

Adv Mater

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!