Vascular endothelial growth factor in porcine-derived extracellular matrix.

Endothelium

Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Published: December 2001

An extracellular matrix (ECM) derived from the submucosa of the porcine small intestine (SIS) has been shown to induce angiogenesis and host tissue remodeling when used as a xenogeneic bioscaffold in animal models of wound repair. In the present study, we compared the in vitro effects of SIS ECM extracts to several purified angiogenic growth factors on human dermal microvascular endothelial cell (HMEC) growth patterns. The SIS ECM was shown to induce tube formation from HMEC in a three-dimensional fibrin-based angiogenesis assay in a manner similar to that caused by the addition of vascular endothelial growth factor (VEGF). This tube formation was blocked in the presence of anti-VEGF neutralizing antibody. Western blots and ELISA procedures showed that the SIS ECM contains as much as 0.77 ng VEGF/g SIS. The closely related endothelial cell mitogen, platelet-derived growth factor (PDGF), was not detectable in the SIS extracts. We conclude that VEGF is present in the SIS extracellular matrix. The role of VEGF in SIS-induced wound repair remains unknown, but its presence in the ECM makes it a possible contributor to the angiogenic effect of SIS when this ECM is used as a tissue repair scaffold in animal models of wound repair.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10623320109063154DOI Listing

Publication Analysis

Top Keywords

sis ecm
16
growth factor
12
extracellular matrix
12
wound repair
12
vascular endothelial
8
endothelial growth
8
sis
8
animal models
8
models wound
8
endothelial cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!