Changes in 13C NMR chemical shifts of DNA as a tool for monitoring drug interactions.

Biophys Chem

Boehringer Ingelheim (Canada) Ltd., Research and Development, Laval, PQ.

Published: May 2001

The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to explore the effects of ligand binding on the 13C NMR chemical shifts of the DNA base and sugar carbons. The binding mode of netrospin to TA-rich tracts of DNA has been well documented and served as an attractive model system. For the base carbons, four large changes in resonance chemical shifts were observed upon complex formation: -0.64 ppm for carbon 4 of either Ado4 or Ado6, 1.36 ppm for carbon 2 of Thd5, 1.33 ppm for carbon 5 of Thd5 and 0.94 for carbon 6 of Thd5. AdoC4 is covalently bonded to a heteroatom that is hydrogen bonded to netropsin; this relatively large deshielding is consistent with the known hydrogen bond formed at AdoN3. The three large shielding increases are consistent with hydrogen bonds to water in the minor groove being disrupted upon netropsin binding. For the DNA sugar resonances, large changes in chemical shifts were observed upon netropsin complexation. The 2', 3' and 5' 13C resonances of Thd3 and Thd5 were shielded whereas those of Ado4 and Ado6 were deshielded; the 13C resonances of 1' and 4' could not be assigned. These changes are consistent with alteration of the dynamic pseudorotational states occupied by the DNA sugars. A significant alteration in the pseudorotational states of Ado4 or Ado6 must occur as suggested by the large change in chemical shift of -1.65 ppm of the C3' carbon. In conclusion, 13C NMR may serve as a practical tool for analyzing structural changes in DNA-ligand complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-4622(01)00143-0DOI Listing

Publication Analysis

Top Keywords

chemical shifts
16
13c nmr
12
ppm carbon
12
ado4 ado6
12
carbon thd5
12
nmr chemical
8
shifts dna
8
large changes
8
shifts observed
8
consistent hydrogen
8

Similar Publications

Benchmark of Density Functional Theory in the Prediction of C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation.

J Chem Theory Comput

January 2025

Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.

View Article and Find Full Text PDF

Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

Revolutionizing Methane Transformation with the Dual Production of Aromatics and Electricity in a Protonic Ceramic Electrocatalytic Membrane Reactor.

ACS Appl Mater Interfaces

January 2025

Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.

Reducing the energy and carbon intensity of the conventional chemical processing industry can be achieved by electrochemically transforming natural gases into higher-value chemicals with higher efficiency and near-zero emissions. In this work, the direct conversion of methane to aromatics and electricity has been achieved in a protonic ceramic electrocatalytic membrane reactor through the integration of a proton-conducting membrane assembly and a trimetallic Pt-Cu/Mo/ZSM-5 catalyst for the nonoxidative methane dehydro-aromatization reaction. In this integrated system, a remarkable 15.

View Article and Find Full Text PDF

Single cell Ca imaging is essential for the study of Ca channels activated by various stimulations like temperature, voltage, native compound and chemicals et al. It primarily relies on microscopy imaging technology and the related Ca indicator Fura-2/AM (AM is the abbreviation for Acetoxymethyl ester). Inside the cells, Fura-2/AM is hydrolyzed by esterases into Fura-2, which can reversibly bind with free cytoplasmic Ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!