Mosquito bites can elicit dermal hypersensitivity reactions, but little is known about the chemotactic factors for host leukocytes in mosquito saliva. In this study, we determined that saliva from a malarial vector mosquito, Anopheles stephensi, possesses intense neutrophil chemotactic activity. In contrast, the midgut extract had only marginal neutrophil chemotactic activity. Eosinophil chemotactic activity was detected in the midgut but not in the saliva. According to the results of size-exclusion HPLC on a G3000SW column and Western blot analysis, the apparent molecular weight (MW) of the main neutrophil chemotactic factor (NCF) was estimated to be 200 kDa. NCF could bind with IgG from the pooled serum of Solomon islanders, whereas not with that of healthy Japanese. NCF activity was increased upon heating to 56 degrees C for 30 min or protease digestion, whereas it was affected by periodate treatment. Protease-digested NCF and naive NCF bound to lentil lectin-Sepharose, and both were eluted with a competitive sugar, methyl-alpha-D-glucoside. These results indicate that A. stephensi saliva-derived NCF is a high MW glycoprotein, and its protein moiety is important for neutrophil chemotactic activity. This NCF is thought to contribute to the inflammatory reactions through the accumulation of neutrophils at the site of the mosquito bite.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004360000355DOI Listing

Publication Analysis

Top Keywords

neutrophil chemotactic
20
chemotactic activity
16
anopheles stephensi
8
molecular weight
8
chemotactic factor
8
chemotactic
7
ncf
7
neutrophil
5
activity
5
role saliva
4

Similar Publications

Characteristics of neutrophil chemotaxis in bottlenose dolphin (Tursiops truncatus).

Vet Immunol Immunopathol

January 2025

Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:

Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.

View Article and Find Full Text PDF

Traveling wave chemotaxis of neutrophil-like HL-60 cells.

Mol Biol Cell

December 2024

Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.

The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants fMLP and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration.

View Article and Find Full Text PDF

Introduction: Granulocyte concentrates (GC) are leukocyte preparations enriched in neutrophils that can potentially save neutropenic patients from life-threatening, antimicrobial-resistant infections. The main challenge of GC transfusions is preserving the viability and antimicrobial activity of neutrophils beyond 24 h to reduce the logistical burden on collection centers and increase the availability of this cell therapy. Thus, the aim of this study was to explore extending the ex vivo viability and antimicrobial activity of GC neutrophils up to 72 h with a unique combination of the clinically-approved additives Plasma-Lyte, SAGM, AS-3 and Alburex.

View Article and Find Full Text PDF

Background And Hypothesis: Kidney macrophage infiltration is a histological hallmark of vasculitic lesions and is strongly linked to disease activity in anti-neutrophil cytoplasmic antibodies (ANCA)-associated glomerulonephritis (AGN). The precise mechanisms by which kidney macrophages influence local inflammation and long-term damage remain largely unknown.

Methods: Here, we investigate kidney macrophage diversity using single-cell transcriptome analysis of 25 485 freshly retrieved unfrozen, high-quality kidney CD45+ immune cells from five AGN patients during active disease, a lupus nephritis and nephrectomy control.

View Article and Find Full Text PDF

The extravasation of polymorphonuclear neutrophils (PMNs) is a critical component of the innate immune response that involves transendothelial migration (TEM) and interstitial migration. TEM-mediated interactions between PMNs and vascular endothelial cells (VECs) trigger a cascade of biochemical and mechanobiological signals whose effects on interstitial migration are currently unclear. To address this question, we cultured human VECs on a fibronectin-treated transwell insert to model the endothelium and basement membrane, loaded PMN-like differentiated HL60 (dHL-60) cells in the upper chamber of the insert, and collected the PMNs that crossed the membrane-supported monolayer from the lower chamber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!